Hypertension is a major modifiable cardiovascular risk factor and a leading cause of cardiovascular disease and premature death worldwide.1 However, 10–20% of hypertensives present resistant hypertension (RH), defined as blood pressure (BP) levels above the goal despite the concurrent administration of three antihypertensives from distinct classes, including a diuretic, at optimal doses. RH is associated with increased risk for target organ damage and cardiovascular morbidity, and mortality.2

The endothelin system is activated in low-renin and salt-sensitive forms of hypertension, which are common features in patients with RH, but it is not targeted by current antihypertensive drugs.3 Indeed, endothelin-1 (ET-1) is a potent vasoconstrictor and produces endothelial dysfunction, aldosterone and catecholamine release, vascular remodelling, and end-organ damage.4 Canonical signalling pathways activated by ET-1 in vascular smooth muscle and endothelial cells are summarized in Figure 1. Thus, it was hypothesized that RH may be dependent, in part at least, on ET-1. If so, the blockade of the endothelin pathway with a dual endothelin receptor antagonist (ERA) might represent a novel approach to reduce BP in individuals with RH.

(A) Canonical signalling pathways activated by endothelin-1 (ET-1) in vascular smooth muscle (VSMC) and endothelial cells (EC) and mechanism of action of aprocitentan. ET-1 synthesized in EC from precursors via endothelin converting enzymes (ECE) is released in response to a variety of stimuli and binds to two membrane G-protein (Gp) coupled receptors, ETA and ETB. ET-1 binding to ETA and ETB receptors located on VSMC activates phospholipase C (PLCβ), which converts phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol trisphosphate (IP3) and diacylglycerol (DAG). IP3 binds its receptor located on the endoplasmic reticulum (ER) and increases the release of Ca2+ via IP3-sensitive channels into the cytosol and the [Ca2+]i producing a potent vasoconstriction. DAG opens receptor-operated Ca2+ channels (ROC) which further increase the [Ca2+]i and activates myosin light chain kinase (MLCK); both effects also contribute to ET-1-induced vasoconstriction. DAG also activates protein kinase C (PKC)/mitogen-activated protein kinase (MAPK) pathways leading to proliferative effects, vascular remodelling and end-organ damage. Additionally, PKC phosphorylates MLCK promoting actin—myosin cross-bridging and VSMC contraction. Conversely, activation of ETB receptors in EC increases the synthesis of nitric oxide (NO) and prostacyclin (PGI2), and the activation of cyclic adenosine monophosphate(cAMP)/protein kinase A (PKA) and soluble guanylyl cyclase (sGC)/protein kinase G (PKG) pathways, respectively, leading to vasodilation. (B) Phase 2 and 3 clinical trials with aprocitentan. Abbreviations. CKD, chronic kidney disease; DB, double-blind; DBP, diastolic blood pressure; DD, double-dummy; EH, essential hypertension; eGFR, estimated glomerular filtration rate; ETAR/ETBR, ETA and ETB receptors; FU, follow-up; HF, heart failure; IL-1, interleukin 1; NCT, ClinicalTrials.gov identifier. od, once daily; PC, placebo-controlled; R, randomized; RH, resistant hypertension; SB, single-blind; SBP, systolic blood pressure; TGF, transforming growth factor; and UCAR, urine albumin-creatinine ratio.
Figure 1

(A) Canonical signalling pathways activated by endothelin-1 (ET-1) in vascular smooth muscle (VSMC) and endothelial cells (EC) and mechanism of action of aprocitentan. ET-1 synthesized in EC from precursors via endothelin converting enzymes (ECE) is released in response to a variety of stimuli and binds to two membrane G-protein (Gp) coupled receptors, ETA and ETB. ET-1 binding to ETA and ETB receptors located on VSMC activates phospholipase C (PLCβ), which converts phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol trisphosphate (IP3) and diacylglycerol (DAG). IP3 binds its receptor located on the endoplasmic reticulum (ER) and increases the release of Ca2+ via IP3-sensitive channels into the cytosol and the [Ca2+]i producing a potent vasoconstriction. DAG opens receptor-operated Ca2+ channels (ROC) which further increase the [Ca2+]i and activates myosin light chain kinase (MLCK); both effects also contribute to ET-1-induced vasoconstriction. DAG also activates protein kinase C (PKC)/mitogen-activated protein kinase (MAPK) pathways leading to proliferative effects, vascular remodelling and end-organ damage. Additionally, PKC phosphorylates MLCK promoting actin—myosin cross-bridging and VSMC contraction. Conversely, activation of ETB receptors in EC increases the synthesis of nitric oxide (NO) and prostacyclin (PGI2), and the activation of cyclic adenosine monophosphate(cAMP)/protein kinase A (PKA) and soluble guanylyl cyclase (sGC)/protein kinase G (PKG) pathways, respectively, leading to vasodilation. (B) Phase 2 and 3 clinical trials with aprocitentan. Abbreviations. CKD, chronic kidney disease; DB, double-blind; DBP, diastolic blood pressure; DD, double-dummy; EH, essential hypertension; eGFR, estimated glomerular filtration rate; ETAR/ETBR, ETA and ETB receptors; FU, follow-up; HF, heart failure; IL-1, interleukin 1; NCT, ClinicalTrials.gov identifier. od, once daily; PC, placebo-controlled; R, randomized; RH, resistant hypertension; SB, single-blind; SBP, systolic blood pressure; TGF, transforming growth factor; and UCAR, urine albumin-creatinine ratio.

In both animal models and hypertensive patients, ERAs decrease BP and prevent end-organ damage3 but many clinical programs were discontinued by safety concerns related to fluid retention/edema, and hepatotoxicity. Thus, no ERA has been approved for the treatment of arterial hypertension, and only one ERA, aprocitentan, was developed for the treatment of RH.

Aprocitentan, the active metabolite of macitentan, is a once-daily, orally active, dual ERA that potently inhibits the binding of ET-1 to ETA and ETB receptors (ETA/ETB inhibitory potency ratio 1:16).3,4 It is rapidly absorbed reaching peak plasma levels within 3–9 h, is highly bound to plasma proteins (>99%), presents a volume of distribution of 40 L, is metabolized independently from CYP450 enzymes and presents a half-life of 44 h.4 No dose adjustment is required in patients with moderate hepatic or severe renal impairment and can be administered with cytochrome P450 inhibitors/inducers. The mechanism of action and main clinical trials with aprocitentan are shown in Figure 1.

In a phase 2 dose-finding study in patients with essential hypertension, aprocitentan (5–50 mg) decreased sitting systolic/diastolic BP (SBP/DBP) in a dose‐dependent manner with a maximal reduction at 25 mg od (9.9/7.0 mgHg), while lisinopril (20 mg od) decreased SBP/DBP by 4.8/3.8 mmHg compared with placebo.5 The phase 3 PRECISION trial, analysed the long-term efficacy and safety of aprocitentan (12.5 and 25 mg) with both office and ambulatory BP measurements in patients with RH using a unique design.6 After 4 weeks of treatment, the least square mean (SE) change in office SBP with both doses of aprocitentan was −3.7 (1.3) mmHg (P = 0.0042) compared with placebo. The respective difference for 24‐h ambulatory SBP was −4.2 mm Hg and −5.9 mm Hg, respectively. The SBP/DBP reduction was maintained for 44 weeks. Following 4 weeks of withdrawal, office SBP significantly increased with placebo compared with aprocitentan.

The most common adverse effect of aprocitentan was mild‐moderate oedema/fluid retention. In the PRECISION trial,6 oedema/fluid retention occurred in 9.1%, 18.4%, and 2.1% of patients treated with aprocitentan 12.5 or 25 mg or placebo during the step 1 and in 18.2% of patients receiving aprocitentan 25 mg during 32-weeks. Oedema/fluid retention was more frequent in patients with chronic kidney disease stage 3–4 and, possibly, with underlying left ventricular dysfunction. Hepatic disorders were observed in 2.3% of patients treated with aprocitentan 25 mg. Aprocitentan may cause embryo-foetal harm if used during pregnancy.

Based on these results, and after 30 years of clinical research, aprocitentan is the first ERA approved in combination with other drugs for the treatment of patients with RH.

Conflict of interest: None.

Data availability

There are no new data associated with this article.

References

1.

GBD 2021 Causes of Death Collaborators
.
Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
.
Lancet
 
2024
;
403
:
P2100
2132
.

2.

Williams
 
B
,
Mancia
 
G
,
Spiering
 
W
,
Agabiti Rosei
 
E
,
Azizi
 
M
,
Burnier
 
M
,
Clement
 
DL
,
Coca
 
A
,
De Simone
 
G
,
Dominiczak
 
A
,
Kahan
 
T
,
Mahfoud
 
F
,
Redon
 
J
,
Ruilope
 
L
,
Zanchetti
 
A
,
Kerins
 
M
,
Kjeldsen
 
SE
,
Kreutz
 
R
,
Laurent
 
S
,
Lip
 
GYH
,
Mcmanus
 
R
,
Narkiewicz
 
K
,
Ruschitzka
 
F
,
Schmieder
 
RE
,
Shlyakhto
 
E
,
Tsioufis
 
C
,
Aboyans
 
V
,
Desormais
 
I
,
De Backer
 
G
,
Heagerty
 
AM
,
Agewall
 
S
,
Bochud
 
M
,
Borghi
 
C
,
Boutouyrie
 
P
,
Brguljan
 
J
,
Bueno
 
H
,
Caiani
 
EG
,
Carlberg
 
B
,
Chapman
 
N
,
Cífková
 
R
,
Cleland
 
JGF
,
Collet
 
J-P
,
Coman
 
IM
,
De Leeuw
 
PW
,
Delgado
 
V
,
Dendale
 
P
,
Diener
 
H-C
,
Dorobantu
 
M
,
Fagard
 
R
,
Farsang
 
C
,
Ferrini
 
M
,
Graham
 
IM
,
Grassi
 
G
,
Haller
 
H
,
Hobbs
 
FDR
,
Jelakovic
 
B
,
Jennings
 
C
,
Katus
 
HA
,
Kroon
 
AA
,
Leclercq
 
C
,
Lovic
 
D
,
Lurbe
 
E
,
Manolis
 
AJ
,
Mcdonagh
 
TA
,
Messerli
 
F
,
Muiesan
 
ML
,
Nixdorff
 
U
,
Olsen
 
MH
,
Parati
 
G
,
Perk
 
J
,
Piepoli
 
MF
,
Polonia
 
J
,
Ponikowski
 
P
,
Richter
 
DJ
,
Rimoldi
 
SF
,
Roffi
 
M
,
Sattar
 
N
,
Seferovic
 
PM
,
Simpson
 
IA
,
Sousa-Uva
 
M
,
Stanton
 
AV
,
Van De Borne
 
P
,
Vardas
 
P
,
Volpe
 
M
,
Wassmann
 
S
,
Windecker
 
S
,
Zamorano
 
JL
,
Windecker
 
S
,
Aboyans
 
V
,
Agewall
 
S
,
Barbato
 
E
,
Bueno
 
H
,
Coca
 
A
,
Collet
 
J-P
,
Coman
 
IM
,
Dean
 
V
,
Delgado
 
V
,
Fitzsimons
 
D
,
Gaemperli
 
O
,
Hindricks
 
G
,
Iung
 
B
,
Jüni
 
P
,
Katus
 
HA
,
Knuuti
 
J
,
Lancellotti
 
P
,
Leclercq
 
C
,
Mcdonagh
 
TA
,
Piepoli
 
MF
,
Ponikowski
 
P
,
Richter
 
DJ
,
Roffi
 
M
,
Shlyakhto
 
E
,
Simpson
 
IA
,
Sousa-Uva
 
M
,
Zamorano
 
JL
,
Tsioufis
 
C
,
Lurbe
 
E
,
Kreutz
 
R
,
Bochud
 
M
,
Rosei
 
EA
,
Jelakovic
 
B
,
Azizi
 
M
,
Januszewics
 
A
,
Kahan
 
T
,
Polonia
 
J
,
Van De Borne
 
P
,
Williams
 
B
,
Borghi
 
C
,
Mancia
 
G
,
Parati
 
G
,
Clement
 
DL
,
Coca
 
A
,
Manolis
 
A
,
Lovic
 
D
,
Benkhedda
 
S
,
Zelveian
 
P
,
Siostrzonek
 
P
,
Najafov
 
R
,
Pavlova
 
O
,
De Pauw
 
M
,
Dizdarevic-Hudic
 
L
,
Raev
 
D
,
Karpettas
 
N
,
Linhart
 
A
,
Olsen
 
MH
,
Shaker
 
AF
,
Viigimaa
 
M
,
Metsärinne
 
K
,
Vavlukis
 
M
,
Halimi
 
J-M
,
Pagava
 
Z
,
Schunkert
 
H
,
Thomopoulos
 
C
,
Páll
 
D
,
Andersen
 
K
,
Shechter
 
M
,
Mercuro
 
G
,
Bajraktari
 
G
,
Romanova
 
T
,
Trušinskis
 
K
,
Saade
 
GA
,
Sakalyte
 
G
,
Noppe
 
S
,
Demarco
 
DC
,
Caraus
 
A
,
Wittekoek
 
J
,
Aksnes
 
TA
,
Jankowski
 
P
,
Polonia
 
J
,
Vinereanu
 
D
,
Baranova
 
EI
,
Foscoli
 
M
,
Dikic
 
AD
,
Filipova
 
S
,
Fras
 
Z
,
Bertomeu-Martínez
 
V
,
Carlberg
 
B
,
Burkard
 
T
,
Sdiri
 
W
,
Aydogdu
 
S
,
Sirenko
 
Y
,
Brady
 
A
,
Weber
 
T
,
Lazareva
 
I
,
Backer
 
TD
,
Sokolovic
 
S
,
Jelakovic
 
B
,
Widimsky
 
J
,
Viigimaa
 
M
,
Pörsti
 
I
,
Denolle
 
T
,
Krämer
 
BK
,
Stergiou
 
GS
,
Parati
 
G
,
Trušinskis
 
K
,
Miglinas
 
M
,
Gerdts
 
E
,
Tykarski
 
A
,
De Carvalho Rodrigues
 
M
,
Dorobantu
 
M
,
Chazova
 
I
,
Lovic
 
D
,
Filipova
 
S
,
Brguljan
 
J
,
Segura
 
J
,
Gottsäter
 
A
,
Pechère-Bertschi
 
A
,
Erdine
 
S
,
Sirenko
 
Y
,
Brady
 
A
.,
ESC Scientific Document Group
.
2018 ESC/ESH Guidelines for the management of arterial hypertension
.
Eur Heart J
 
2018
;
39
:
3021
3104
.

3.

Clozel
 
M
.
Aprocitentan and the endothelin system in resistant hypertension
.
Can J Physiol Pharmacol
 
2022
;
100
:
573
583
.

4.

Heidari Nejad
 
S
,
Azzam
 
O
,
Schlaich
 
MP
.
Dual Endothelin Antagonism with Aprocitentan as a Novel Therapeutic Approach for Resistant Hypertension
.
Curr Hypertens Rep
 
2023
;
25
:
343
352
.

5.

Verweij
 
P
,
Danaietash
 
P
,
Flamion
 
B
,
Ménard
 
J
,
Bellet
 
M
.
Randomized Dose-Response Study of the New Dual Endothelin Receptor Antagonist Aprocitentan in Hypertension
.
Hypertension
 
2020
;
75
:
956
965
.

6.

Schlaich
 
MP
,
Bellet
 
M
,
Weber
 
MA
,
Danaietash
 
P
,
Bakris
 
GL
,
Flack
 
JM
,
Dreier
 
RF
,
Sassi-Sayadi
 
M
,
Haskell
 
LP
,
Narkiewicz
 
K
,
Wang
 
J-G
,
Reid
 
C
,
Schlaich
 
M
,
Katz
 
I
,
Ajani
 
A
,
Biswas
 
S
,
Esler
 
M
,
Elder
 
G
,
Roger
 
S
,
Colquhoun
 
D
,
Mooney
 
J
,
De Backer
 
T
,
Persu
 
A
,
Chaumont
 
M
,
Krzesinski
 
J-M
,
Vanassche
 
T
,
Girard
 
G
,
Pliamm
 
L
,
Schiffrin
 
E
,
Merali
 
F
,
Dresser
 
G
,
Vallee
 
M
,
Jolly
 
S
,
Chow
 
S
,
Wang
 
J
,
Mu
 
J
,
Yu
 
J
,
Yuan
 
H
,
Feng
 
Y
,
Zhang
 
X
,
Xie
 
J
,
Lin
 
L
,
Soucek
 
M
,
Widimsky
 
J
,
Cifkova
 
R
,
Vaclavik
 
J
,
Ullrych
 
M
,
Lukac
 
M
,
Rychlik
 
I
,
Guldager Lauridsen
 
T
,
Kantola
 
I
,
Taurio
 
J
,
Ukkola
 
O
,
Ormezzano
 
O
,
Gosse
 
P
,
Azizi
 
M
,
Courand
 
P-Y
,
Delsart
 
P
,
Tartiere
 
JM
,
Mahfoud
 
F
,
Schmieder
 
R
,
Stegbauer
 
J
,
Lurz
 
P
,
Koziolek
 
M
,
Ott
 
C
,
Toursarkissian
 
N
,
Tsioufis
 
K
,
Kyfnidis
 
K
,
Manolis
 
A
,
Patsilinakos
 
S
,
Zebekakis
 
P
,
Karavidas
 
A
,
Denes
 
P
,
Bezzegh
 
K
,
Zsom
 
M
,
Kovacs
 
L
,
Sharabi
 
Y
,
Elias
 
M
,
Sukholutsky
 
I
,
Yosefy
 
C
,
Kenis
 
I
,
Atar
 
S
,
Volpe
 
M
,
Maria Lorenza
 
M
,
Taddei
 
S
,
Grassi
 
G
,
Veglio
 
F
,
Son
 
JW
,
Kim
 
J-Y
,
Park
 
J-I
,
Lee
 
CH
,
Lee
 
H-Y
,
Raugaliene
 
R
,
Marcinkeviciene
 
JE
,
Kavaliauskiene
 
R
,
Deinum
 
J
,
Kroon
 
A
,
Van Den Born
 
B-J
,
Januszewicz
 
A
,
Tykarski
 
A
,
Walczewska
 
J
,
Gaciong
 
Z
,
Wiecek
 
A
,
Chrostowska
 
M
,
Kleinrok
 
A
,
Krekora
 
J
,
Kania
 
G
,
Podrazka-Szczepaniak
 
A
,
Golawski
 
C
,
Podziewski
 
M
,
Kaczmarek
 
B
,
Skoczylas
 
G
,
Wilkolaski
 
A
,
Wozniak
 
I
,
Janik-Palazzolo
 
M
,
Rewerska
 
B
,
Konradi
 
A
,
Shvarts
 
Y
,
Pecherina
 
T
,
Nikolaev
 
K
,
Liudmila
 
G
,
Orlikova
 
O
,
Mordovin
 
V
,
Petrochenkova
 
N
,
Kamalov
 
G
,
Kosmacheva
 
E
,
Nikolaev
 
K
,
Tyrenko
 
V
,
Gorbunov
 
V
,
Obrezan
 
A
,
Supryadkina
 
T
,
Ler
 
I
,
Kotenko
 
O
,
Kuzin
 
A
,
Martínez García
 
F
,
Redon
 
J
,
Oliveras
 
A
,
Beltran Romero
 
L
,
Shatylo
 
V
,
Rudenko
 
L
,
Bazylevych
 
A
,
Rudyk
 
Y
,
Karpenko
 
O
,
Stanislavchuk
 
M
,
Tseluyko
 
V
,
Kushnir
 
M
,
Asanov
 
E
,
Sirenko
 
Y
,
Yagensky
 
A
,
Collier
 
D
,
Gupta
 
P
,
Webb
 
D
,
Macleod
 
M
,
Mclay
 
J
,
Peace
 
A
,
Arora
 
S
,
Buchanan
 
P
,
Harris
 
R
,
Degarmo
 
R
,
Guillen
 
M
,
Karns
 
A
,
Neutel
 
J
,
Paliwal
 
Y
,
Pettis
 
K
,
Toth
 
PD
,
Wayne
 
JM
,
Butcher
 
MB
,
Diller
 
PM
,
Oparil
 
S
,
Calhoun
 
D
,
Brautigam
 
D
,
Flack
 
J
,
Goldman
 
JM
,
Rashidi
 
A
,
Aslam
 
N
,
Haley
 
W
,
Andrawis
 
N
,
Lang
 
B
,
Miller
 
R
,
Powell
 
J
,
Dewhurst
 
R
,
Pritchard
 
J
,
Khanna
 
D
,
Tang
 
D
,
Gabra
 
N
,
Park
 
J
,
Jones
 
C
,
Scott
 
C
,
Luna
 
B
,
Mussaji
 
M
,
Bhagwat
 
R
,
Bauer
 
M
,
Mcginty
 
J
,
Nambiar
 
R
,
Sangrigoli
 
R
,
Davis
 
WR
,
Eaves
 
W
,
Mcgrew
 
F
,
Awad
 
A
,
Bolster
 
E
,
Scott
 
D
,
Kalirao
 
P
,
Dabel
 
P
,
Calhoun
 
W
,
Gouge
 
S
,
Warren
 
M
,
Lawrence
 
MK
,
Jamal
 
A
,
El-Shahawy
 
M
,
Mercado
 
C
,
Kumar
 
J
,
Velasquez-Mieyer
 
P
,
Busch
 
R
,
Lewis
 
T
,
Rich
 
L
.,
PRECISION investigators
.
Dual endothelin antagonist aprocitentan for resistant hypertension (PRECISION): a multicentre, blinded, randomised, parallel-group, phase 3 trial
.
Lancet
 
2022
;
400
:
1927
1937
.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://dbpia.nl.go.kr/journals/pages/open_access/funder_policies/chorus/standard_publication_model)