Abstract

Aims

Emerging antihypertensive drug classes offer new opportunities to manage hypertension; however, their long-term effects on cardiovascular, kidney, and metabolic (CKM) outcomes remain to be elucidated. This study aims to explore the effects of phosphodiesterase type 5 inhibitors (PDE5i), soluble guanylate cyclase stimulators (sGCs), endothelin receptor antagonists (ERAs), and angiotensinogen inhibitors (AGTis) on a range of CKM outcomes.

Methods and results

Mendelian randomization (MR), summary-based MR (SMR), and colocalization analyses were applied to assess the drug effect on coronary artery disease (CAD), myocardial infarction (MI), ischaemic stroke, atrial fibrillation (AF), heart failure (HF), type 2 diabetes (T2D), and chronic kidney disease (CKD). Genetic association and gene expression summary data were obtained from the largest European-ancestry genome-wide association studies (GWAS) and the genotype-tissue expression version 8 for 29 tissues relevant to the outcomes' pathophysiology.

Genetically predicted systolic blood pressure (SBP) reduction was associated with reduced risks of all outcomes. PDE5i was associated with reduced risks of CAD (OR per 10-mmHg decrease in SBP: 0.348[95% confidence interval (CI): 0.199–0.607]) and ischaemic stroke (0.588[0.453–0.763]). sGCs showed protective effects against CAD (0.332[0.236–0.469]), MI (0.238[0.168–0.337]), and CKD (0.55[0.398–0.761]). ERA and AGTi showed protective effects against CAD and ischaemic stroke. SMR and colocalization supported the association of gene expression levels of GUCY1A3 and PDE5A with CAD and MI risk.

Conclusion

Our study highlights the potential of PDE5i, sGCs, ERA, and AGTi in reducing cardiovascular and renal risks. These findings underscore the necessity for targeted clinical trials to validate the efficacy and safety of these therapies.

MR, Mendelian randomization; SMR, summary-based Mendelian randomization; SNP, single nucleotide polymorphism; eQTL, expression quantitative trait loci; GWAS, genome-wide association studies; ERAs, endothelin receptor antagonists; AGTi, angiotensinogen inhibitors; CAD, coronary artery disease; MI, myocardial infarction; AF, atrial fibrillation; HF, heart failure; CKD, chronic kidney disease; T2D, type 2 diabetes; SBP, systolic blood pressure; OR, odds ratio; CI, confidence interval; SBP, systolic blood pressure; AAo, artery aorta; ATib, artery tibial.
Graphical Abstract

MR, Mendelian randomization; SMR, summary-based Mendelian randomization; SNP, single nucleotide polymorphism; eQTL, expression quantitative trait loci; GWAS, genome-wide association studies; ERAs, endothelin receptor antagonists; AGTi, angiotensinogen inhibitors; CAD, coronary artery disease; MI, myocardial infarction; AF, atrial fibrillation; HF, heart failure; CKD, chronic kidney disease; T2D, type 2 diabetes; SBP, systolic blood pressure; OR, odds ratio; CI, confidence interval; SBP, systolic blood pressure; AAo, artery aorta; ATib, artery tibial.

Introduction

Hypertension remains a leading modifiable risk factor for cardiovascular morbidity and mortality worldwide, affecting ∼1.3 billion adults globally.1 Despite the widespread availability of antihypertensive medications, achieving optimal blood pressure (BP) control continues to be a significant challenge. Approximately 30%–50% of treated hypertensive patients fail to reach target BP levels, highlighting the need for novel therapeutic strategies.2

Recent advances in cardiovascular pharmacology have introduced new classes of therapeutic agents targeting alternative pathways implicated in hypertension pathophysiology. Phosphodiesterase type 5 inhibitors (PDE5i) enhance nitric oxide (NO) signalling by preventing cyclic guanosine 3′,5′ -monophosphate (cGMP) degradation, leading to vasodilation. While primarily used for erectile dysfunction and pulmonary arterial hypertension (PAH), PDE5-induced intracellular cGMP stabilization provides potential therapeutic benefits for hypertension, coronary artery disease (CAD), stroke, chronic kidney disease (CKD), and type 2 diabetes (T2D).3 Soluble guanylate cyclase stimulators (sGCs) directly stimulate sGC independently of NO availability, augmenting cGMP production, and promoting vasodilation. sGCs have shown efficacy in managing PAH and heart failure (HF) with reduced ejection fraction.4 Endothelin receptor antagonists (ERAs) block the effects of endothelin-1, a potent vasoconstrictor implicated in vascular remodelling and hypertension. ERAs have been used to treat PAH, and more recently, aprocitentan has been approved for managing resistant hypertension.5 Angiotensinogen inhibitors (AGTis) inhibit the renin-angiotensinogen-aldosterone system (RAAS) at its origin. By reducing angiotensinogen levels, these agents may provide more comprehensive RAAS suppression compared to angiotensin-converting enzyme inhibitors and angiotensin receptor blockers.6 Early-phase studies using antisense oligonucleotides targeting angiotensinogen demonstrated promising antihypertensive effects.7

Despite the therapeutic potential of these emerging agents, significant gaps in knowledge persist regarding their long-term impact on hypertension and cardiovascular diseases (CVDs). Mendelian randomization (MR) studies offer a valuable tool to assess the causal relationships between therapeutic targets and CVDs.8 By leveraging genetic variants as instrumental variables, MR can elucidate the long-term effect of exposure on health outcomes, relatively devoid of confounding factors and reverse causation.9 Summary-based MR (SMR) further extends this approach to identify causal effects of gene expression on traits, while colocalization distinguishes between pleiotropy and shared genetic causation.10,11 These methods are powerful tools to infer causality and elucidate the mechanisms underlying complex traits.

Our study aims to explore the effects of the four emerging antihypertensive drug classes across a wide range of cardiometabolic and renal outcomes through an integrative approach combining MR, SMR, and colocalization analyses.

Methods

Our study includes two stages: (i) perform two-sample MR to explore causal effects of systolic blood pressure (SBP) reduction and emerging antihypertensive drug classes on a range of cardiovascular, kidney, and metabolic (CKM) outcomes; (ii) perform SMR and colocalization to examine if any detected drug-disease association is mediated through gene transcription (Figure 1).

Study design. AGTi, angiotensinogen inhibitor; ERA, endothelin receptor antagonist; sGCs, soluble guanylate cyclase stimulator; PDE5i, phosphodiesterase type 5 inhibitor; SBP, systolic blood pressure; GWAS, genome-wide association study; SNP, single nucleotide polymorphism; eQTL, expression quantitative loci; MR, Mendelian randomization; SMR, summary-based Mendelian randomization; CKM, cardiovascular kidney and metabolic; IVW, inverse-variance weighted; GWAS, genome-wide association studies; (*) indicates a blood pressure GWAS meta-analysis.12
Figure 1

Study design. AGTi, angiotensinogen inhibitor; ERA, endothelin receptor antagonist; sGCs, soluble guanylate cyclase stimulator; PDE5i, phosphodiesterase type 5 inhibitor; SBP, systolic blood pressure; GWAS, genome-wide association study; SNP, single nucleotide polymorphism; eQTL, expression quantitative loci; MR, Mendelian randomization; SMR, summary-based Mendelian randomization; CKM, cardiovascular kidney and metabolic; IVW, inverse-variance weighted; GWAS, genome-wide association studies; (*) indicates a blood pressure GWAS meta-analysis.12

All data used in this study are publicly available summary data extracted from genome-wide association studies (GWAS) and expression quantitative trait loci (eQTL) studies, with ethical approval and informed consent from all participants being obtained from their original studies.

The emerging drug classes include ERAs, PDE5is, sGCs, and AGTis. Pharmacologically active protein targets of each drug class and the corresponding genes were identified using the Drugbank database (Supplementary material online, Table S1).

Genetic instruments selection

To proxy for drug class effects, we selected single nucleotide polymorphisms (SNPs) located within 100 kb on either side of each target gene and strongly associated with SBP at a genome-wide significant level in a GWAS meta-analysis12 (Supplementary Method). Summary statistics for SBP were obtained from a GWAS meta-analysis of 757 601 European-ancestry participants drawn from the UK Biobank and the International Consortium of Blood Pressure. Linkage disequilibrium (LD) clumping at r2 < 0.1 was conducted to remove highly correlated SNPs. To proxy for general SBP-lowering effects, we selected SNPs significantly associated with SBP across the whole genome. The r2 < 0.001 was used for clumping due to a larger number of SNPs. F-statistics were used to evaluate instrument strength.13

To proxy for the effect of changes in gene expression level, we selected cis-eQTL located within 1Mb window of the gene. The eQTL data were obtained from genotype-tissue expression (GTEx) version 8 (P < 5 × 10−8)14 (Supplementary Method). For positive control testing, only genes whose expression levels were associated with SBP (P < 0.05) were taken forward for the SMR analysis.

Outcome data

The outcomes include CAD, myocardial infarction (MI), ischaemic stroke, atrial fibrillation (AF), HF, T2D, and CKD. These outcomes were selected based on their clinical significance and relevance to hypertension and BP-lowering drug effects.15–17 Summary data for these outcomes were obtained from the largest GWAS available, with most participants of European ancestry aligning with our exposure data (Table 1).

Table 1

GWAS used in this study

TraitPopulationSample sizeUnitAdjustments
Systolic blood pressure12European757 601mmHgAge, age2, sex, BMI, genotyping chips, antihypertensive medication
Atrial fibrillation31European1 030 836 (60 620 cases)log-oddsAge, sex, study-specific covariates, PCs
Heart failure32European977 323 (47 309 cases)log-oddsAge, sex, PCs
Coronary artery disease33>95% European1 165 690 (181 522 cases)log-oddsAge, sex, study-specific covariates, PCs
Myocardial infarction2777% European171 875 (43 676 cases)log-oddsAge, sex, study-specific covariates, PCs
Ischaemic stroke34European1 296 908 (62 100 cases)log-oddsAge, sex, study-specific covariates, PCs
Type 2 diabetes35European933 970 (80 154 cases)log-oddsAge, sex, study-specific covariates, PCs
Chronic kidney disease36European480 698 (41 395 cases)log-oddsAge, sex, study-specific covariates, PCs
TraitPopulationSample sizeUnitAdjustments
Systolic blood pressure12European757 601mmHgAge, age2, sex, BMI, genotyping chips, antihypertensive medication
Atrial fibrillation31European1 030 836 (60 620 cases)log-oddsAge, sex, study-specific covariates, PCs
Heart failure32European977 323 (47 309 cases)log-oddsAge, sex, PCs
Coronary artery disease33>95% European1 165 690 (181 522 cases)log-oddsAge, sex, study-specific covariates, PCs
Myocardial infarction2777% European171 875 (43 676 cases)log-oddsAge, sex, study-specific covariates, PCs
Ischaemic stroke34European1 296 908 (62 100 cases)log-oddsAge, sex, study-specific covariates, PCs
Type 2 diabetes35European933 970 (80 154 cases)log-oddsAge, sex, study-specific covariates, PCs
Chronic kidney disease36European480 698 (41 395 cases)log-oddsAge, sex, study-specific covariates, PCs

BMI, body mass index; PC, principal component.

Table 1

GWAS used in this study

TraitPopulationSample sizeUnitAdjustments
Systolic blood pressure12European757 601mmHgAge, age2, sex, BMI, genotyping chips, antihypertensive medication
Atrial fibrillation31European1 030 836 (60 620 cases)log-oddsAge, sex, study-specific covariates, PCs
Heart failure32European977 323 (47 309 cases)log-oddsAge, sex, PCs
Coronary artery disease33>95% European1 165 690 (181 522 cases)log-oddsAge, sex, study-specific covariates, PCs
Myocardial infarction2777% European171 875 (43 676 cases)log-oddsAge, sex, study-specific covariates, PCs
Ischaemic stroke34European1 296 908 (62 100 cases)log-oddsAge, sex, study-specific covariates, PCs
Type 2 diabetes35European933 970 (80 154 cases)log-oddsAge, sex, study-specific covariates, PCs
Chronic kidney disease36European480 698 (41 395 cases)log-oddsAge, sex, study-specific covariates, PCs
TraitPopulationSample sizeUnitAdjustments
Systolic blood pressure12European757 601mmHgAge, age2, sex, BMI, genotyping chips, antihypertensive medication
Atrial fibrillation31European1 030 836 (60 620 cases)log-oddsAge, sex, study-specific covariates, PCs
Heart failure32European977 323 (47 309 cases)log-oddsAge, sex, PCs
Coronary artery disease33>95% European1 165 690 (181 522 cases)log-oddsAge, sex, study-specific covariates, PCs
Myocardial infarction2777% European171 875 (43 676 cases)log-oddsAge, sex, study-specific covariates, PCs
Ischaemic stroke34European1 296 908 (62 100 cases)log-oddsAge, sex, study-specific covariates, PCs
Type 2 diabetes35European933 970 (80 154 cases)log-oddsAge, sex, study-specific covariates, PCs
Chronic kidney disease36European480 698 (41 395 cases)log-oddsAge, sex, study-specific covariates, PCs

BMI, body mass index; PC, principal component.

Statistical analysis

Two-sample MR

MR relies on three main assumptions: (i) the genetic variant is strongly associated with the exposure; (ii) the genetic variant is not associated with any confounders relating to the exposure-outcome; and (iii) the genetic variant is not associated with the outcome, except through the exposure.

The inverse-variance weighted (IVW) method was used as the primary method. A multiplicative random-effects model was used when having more than three genetic variants, otherwise a fixed-effect model was used. MR estimates were presented as odds ratio (OR) for each outcome, with a 95% confidence interval (CI) per 10 mmHg decrease in SBP. A Bonferroni-corrected P-value of 0.0014 [0.05/5 (drug classes & SBP) × 7 outcomes] was used to detect significant associations; a P-value >0.0014 but <0.05 indicates nominal associations. Data harmonisation was performed. Palindromic variants were not excluded. To ensure consistency in SNPs used across analyses, proxies were not used.

The simple median,18 weighted median,18 and MR Egger19 methods were performed as sensitivity analyses (Supplementary Method). The MR Egger intercept test was performed to detect directional pleiotropy. The effect–effect scatter plots were created to illustrate the effects of individual variants on SBP and the outcomes.

Negative control outcome analysis was performed for the following outcomes: low hand grip strength, myopia, Parkinson's disease, and heel bone mineral density (Supplementary material online, Table S2). These outcomes are currently not known to share strong pathological pathways with hypertension or its related CKM outcomes.

As SBP summary data were obtained from a GWAS adjusted for body mass index (BMI), collider bias might be introduced in the MR. We performed a sensitivity analysis using BP summary data from a GWAS that did not adjust for BMI.20

To explore whether observed drug class-outcome associations are mediated through their BP-lowering effect, we performed MR analysis to investigate general SBP-lowering effects on the outcomes.

The propagation of error method21 was performed to test if MR estimates for drug target perturbation significantly differed from those for general SBP-lowering effects. This allows us to assess whether the observed effects could be attributed solely to SBP reduction or if additional mechanisms may be involved.

LD clumping was performed using the TwoSampleMR package in R22; IVW, weighted median, simple median, and MR Egger were performed using the MendelianRandomization package (version 0.6.0) in R.23 All analyses were conducted in R software version 4.2.3.

Summary-based MR

SMR is a form of MR analysis that integrates GWAS and eQTL summary data to discover a causal association between gene expression level and outcome. Out of 49 tissues in the GTEx v8,14 we performed SMR on 29 tissues that are relevant to the pathophysiology of the outcomes and drug mechanisms. SMR estimate was presented as a beta coefficient with 95% CI per 1 unit increase in the gene expression in a particular tissue. A Bonferroni-corrected P-value of 0.0003 (0.05/147 tests) was used to explore significant associations. A P-value >0.0003 but <0.05 indicates a nominal association.

HEIDI (heterogeneity in dependent instruments) test is integrated into the SMR to investigate if an observed gene expression-outcome association is due to a linkage scenario or a shared causal variant10 (Supplementary Method). A PHEIDI < 0.01 indicates the association is likely due to a linkage scenario.10 SMR analyses and HEIDI tests were performed using SMR software version 1.3.1. Default settings were used: PeQTL < 5 × 10−8, MAF > 0.01, and eQTL that are in very high or very low LD with the top associated eQTL (r2 > 0.9 or r2 < 0.05) were excluded from the HEIDI test to avoid collinearity.10

Colocalization analysis

Colocalization analysis was performed to investigate if an observed gene expression-outcome association is due to a shared causal variant (Supplementary Method). We used coloc v5.2.1 R package to perform the analysis. The default settings were used: P1 = 10−4, P2= 10−4, P12= 10−5. A high posterior probability (PP) for the scenario of a shared causal variant (H4) indicates a high probability of a shared causal variant.11

Results

Two-sample MR

A total of 454 uncorrelated SNPs (r2 < 0.001) were identified as instruments for the general SBP-lowering effect (Supplementary material online, Table S3). F-statistics for all SNPs were >10, suggesting a low risk of weak instrument bias. Genetic instruments accounted for 4.7% of the total variance in SBP.

We identified two SNPs for AGTi, one SNP for ERA, five SNPs for PDE5i, and six SNPs for sGCs (Supplementary material online, Table S4S5). F-statistics for all SNPs were > 10 (ranging from 32.46 to 148.08).

Genetically predicted SBP reduction was significantly associated with a reduced risk of all outcomes (ORs range: 0.71–0.87 per 10 mmHg decrease in SBP) (Figure 2, Supplementary material online, Table S6). Sensitivity analysis showed consistent results with the IVW for all outcomes except for T2D. The MR Egger intercept test indicated evidence of horizontal pleiotropy in the analysis with T2D (P-value intercept test = 0.0004; MR Egger OR, 1.08 (0.92–1.26)) (Supplementary material online, Table S6).

MR estimates for the effect of genetically reduced BP through antihypertensive drug target perturbation on outcomes. Data were represented as OR with 95% CI of the outcome per 10 mmHg decrease in SBP. AGTi, angiotensinogen inhibitor; ERAs, endothelin receptor antagonists; PDE5i, phosphodiesterase type 5 inhibitors; sGCs; soluble guanylate cyclase stimulators; AF, atrial fibrillation; CAD, coronary artery disease; MI myocardial infarction; HF, heart failure; T2D, type 2 diabetes; CKD, chronic kidney disease.
Figure 2

MR estimates for the effect of genetically reduced BP through antihypertensive drug target perturbation on outcomes. Data were represented as OR with 95% CI of the outcome per 10 mmHg decrease in SBP. AGTi, angiotensinogen inhibitor; ERAs, endothelin receptor antagonists; PDE5i, phosphodiesterase type 5 inhibitors; sGCs; soluble guanylate cyclase stimulators; AF, atrial fibrillation; CAD, coronary artery disease; MI myocardial infarction; HF, heart failure; T2D, type 2 diabetes; CKD, chronic kidney disease.

Genetically proxied AGTi was significantly associated with a reduced risk of CAD (OR per 10 mmHg decrease in SBP, 0.647, 95% CI, 0.515–0.814, P = 0.0002) and ischaemic stroke [0.487 (0.333–0.712), P = 0.0002]. There was suggestive evidence for the association with reduced MI risk (Figure 2, Supplementary material online, Tables S7S8). The drug effect on ischaemic stroke was significantly larger than the general SBP-lowering effect (Table 2).

Table 2

Difference between MR estimates for general systolic BP-lowering effects and those for drug target perturbation

Drug classExposureOutcomeβdiff (95% CI)P-value
AGTiSBPCAD−0.009 (−0.033, 0.014)0.433
  Ischaemic stroke−0.044 (−0.082, −0.006)0.025
ERASBPCAD−0.128 (−0.175, −0.081)9.86E−08
  Ischaemic stroke−0.124 (−0.195, −0.053)0.001
  MI−0.138 (−0.234, −0.042)0.005
PDE5iSBPCAD−0.071 (−0.127, −0.016)0.012
  Ischaemic stroke−0.025 (−0.051, 0.001)0.064
sGCsSBPCAD−0.076 (−0.111, −0.041)0.00 002
  MI−0.114 (−0.149, −0.079)2.16E−10
  CKD−0.045 (−0.078, −0.012)0.007
Drug classExposureOutcomeβdiff (95% CI)P-value
AGTiSBPCAD−0.009 (−0.033, 0.014)0.433
  Ischaemic stroke−0.044 (−0.082, −0.006)0.025
ERASBPCAD−0.128 (−0.175, −0.081)9.86E−08
  Ischaemic stroke−0.124 (−0.195, −0.053)0.001
  MI−0.138 (−0.234, −0.042)0.005
PDE5iSBPCAD−0.071 (−0.127, −0.016)0.012
  Ischaemic stroke−0.025 (−0.051, 0.001)0.064
sGCsSBPCAD−0.076 (−0.111, −0.041)0.00 002
  MI−0.114 (−0.149, −0.079)2.16E−10
  CKD−0.045 (−0.078, −0.012)0.007

βdiff indicates a difference between MR estimates for SBP and those for drug target; CI, conference interval; ERA, endothelin receptor antagonist; sGCs, soluble guanylate cyclase stimulator; PDE5i, phosphodiesterase type 5 inhibitor; AGT, angiotensinogen inhibitor; SBP, systolic blood pressure; CAD, coronary artery disease; MI, myocardial infarction; CKD, chronic kidney disease.

Table 2

Difference between MR estimates for general systolic BP-lowering effects and those for drug target perturbation

Drug classExposureOutcomeβdiff (95% CI)P-value
AGTiSBPCAD−0.009 (−0.033, 0.014)0.433
  Ischaemic stroke−0.044 (−0.082, −0.006)0.025
ERASBPCAD−0.128 (−0.175, −0.081)9.86E−08
  Ischaemic stroke−0.124 (−0.195, −0.053)0.001
  MI−0.138 (−0.234, −0.042)0.005
PDE5iSBPCAD−0.071 (−0.127, −0.016)0.012
  Ischaemic stroke−0.025 (−0.051, 0.001)0.064
sGCsSBPCAD−0.076 (−0.111, −0.041)0.00 002
  MI−0.114 (−0.149, −0.079)2.16E−10
  CKD−0.045 (−0.078, −0.012)0.007
Drug classExposureOutcomeβdiff (95% CI)P-value
AGTiSBPCAD−0.009 (−0.033, 0.014)0.433
  Ischaemic stroke−0.044 (−0.082, −0.006)0.025
ERASBPCAD−0.128 (−0.175, −0.081)9.86E−08
  Ischaemic stroke−0.124 (−0.195, −0.053)0.001
  MI−0.138 (−0.234, −0.042)0.005
PDE5iSBPCAD−0.071 (−0.127, −0.016)0.012
  Ischaemic stroke−0.025 (−0.051, 0.001)0.064
sGCsSBPCAD−0.076 (−0.111, −0.041)0.00 002
  MI−0.114 (−0.149, −0.079)2.16E−10
  CKD−0.045 (−0.078, −0.012)0.007

βdiff indicates a difference between MR estimates for SBP and those for drug target; CI, conference interval; ERA, endothelin receptor antagonist; sGCs, soluble guanylate cyclase stimulator; PDE5i, phosphodiesterase type 5 inhibitor; AGT, angiotensinogen inhibitor; SBP, systolic blood pressure; CAD, coronary artery disease; MI, myocardial infarction; CKD, chronic kidney disease.

Genetically proxied ERA was significantly associated with a reduced risk of CAD (0.197 (0.123–0.315), P = 1.19 × 10−11), MI (0.188 (0.071–0.496), P = 0.0007), and ischaemic stroke [0.218 (0.107–0.443), p = 2.56 × 10−05] and nominally associated with a reduced AF risk (Figure 2, Supplementary material online, Tables S7S8). The drug effects on CAD, MI, and ischaemic stroke were larger than the general SBP-lowering effects (Table 2).

Genetically predicted PDE5i was significantly associated with a lower risk of CAD (0.348 (0.199–0.607), P = 0.0002), and ischaemic stroke [0.588 (0.453–0.763), P = 6.55 × 10−05]. We also found suggestive evidence for the association with a reduced risk of MI, HF, AF, and CKD (Figure 2, Supplementary material online, Table S7). MR Egger intercept test did not detect evidence of horizontal pleiotropy for the significant associations. Sensitivity analyses consistently support the IVW (Supplementary material online, Table S7). The effect–effect scatter plots showed a consistent dose-response pattern (Supplementary material online, Fig. S1). The drug effect on CAD risk was significantly larger than the general SBP-lowering effect (Table 2).

Genetically proxied sGCs was significantly associated with a reduced risk of CAD (0.332 (0.236–0.469), P = 3.45 × 10−10), MI (0.238 (0.168–0.337), P = 5.68 × 10−16), and CKD [0.55 (0.398–0.761], P = 0.0003). There were nominal associations with lower ischaemic stroke and T2D risk (Figure 2, Supplementary material online, Table S7). MR Egger intercept test showed no significant evidence of horizontal pleiotropy. The weighted median and simple median results were consistent with the IVW results. The MR Egger showed consistent effect directions with the IVW for MI and CKD (Supplementary material online, Table S7). The effect–effect scatter plots demonstrated a consistent dose-response pattern for most associations (Supplementary material online, Fig. S2). For sGCs and CAD, one variant (rs10010626) appeared to deviate from the overall trend. We conducted an additional sensitivity analysis by excluding this SNP. The results from IVW and sensitivity analyses supported the protective effect (Supplementary material online, Table S9, Fig. S2). The sGCs drug effects on CAD, MI, and CKD were significantly larger than the general-SBP lowering effects (Table 2).

Negative control analyses did not detect any significant association (Supplementary material online, Table S10). MR analysis using UKB GWAS for SBP gave consistent results with the primary analyses (Supplementary material online, Table S11).

Summary-based MR

We found eQTLs for the following genes that encode proteins targeted by the drug classes: AGT (AGTi), EDNRA (ERA), GUCY1A2, GUCY1A3 (sGCs), and PDE5A (PDE5i). The gene expression level of AGT, GUCY1A2, GUCY1A3, and PDE5A was associated with SBP in at least 1 of the 29 tissues. These genes were taken further for the analysis (Supplementary material online, Table S12).

We observed nominal associations of AGT gene expression with the risk of CAD and AF in brain cerebellar hemisphere, ischaemic stroke in brain cerebellum, and T2D in adipose subcutaneous (Supplementary material online, Table S13Figure 3, Supplementary material online, Fig. S3).

SMR results. The x-axis represents the β estimates from SMR analysis, and the y-axis represents the −log10(PSMR). The circle signifies the corresponding gene that encodes the protein targeted by the antihypertensive drug class (PDE5A gene – PDE5 inhibitors, GUCY1A3 gene – sGC stimulators, AGT gene – AGT inhibitors). βSMR were estimates from SMR analysis per 1 unit increase in the expression of the genes in a particular tissue. βSMR < 0 suggests that an increase in gene expression levels in a particular tissue was associated with a decreased disease risk, and vice versa. The upper horizontal dashed line represents the −log10 of the Bonferroni-corrected P-value (0.0003), corresponding to −log10(pSMR) = 3.523, while the lower horizontal dashed line indicates the −log10 of the nominal P-value (0.05), equivalent to −log10(pSMR) = 1.301. The asterisk indicates HEIDI P> 0.01; AAo, artery aorta; Atib, artery tibial; BCH, brain cerebellar hemisphere; BC, brain cerebellum; Thy, thyroid; HAA, heart atrial appendage; AGTi, angiotensinogen inhibitor; PDE5i, phosphodiesterase type 5 inhibitors; sGCs; soluble guanylate cyclase stimulators.
Figure 3

SMR results. The x-axis represents the β estimates from SMR analysis, and the y-axis represents the −log10(PSMR). The circle signifies the corresponding gene that encodes the protein targeted by the antihypertensive drug class (PDE5A gene – PDE5 inhibitors, GUCY1A3 gene – sGC stimulators, AGT gene – AGT inhibitors). βSMR were estimates from SMR analysis per 1 unit increase in the expression of the genes in a particular tissue. βSMR < 0 suggests that an increase in gene expression levels in a particular tissue was associated with a decreased disease risk, and vice versa. The upper horizontal dashed line represents the −log10 of the Bonferroni-corrected P-value (0.0003), corresponding to −log10(pSMR) = 3.523, while the lower horizontal dashed line indicates the −log10 of the nominal P-value (0.05), equivalent to −log10(pSMR) = 1.301. The asterisk indicates HEIDI P> 0.01; AAo, artery aorta; Atib, artery tibial; BCH, brain cerebellar hemisphere; BC, brain cerebellum; Thy, thyroid; HAA, heart atrial appendage; AGTi, angiotensinogen inhibitor; PDE5i, phosphodiesterase type 5 inhibitors; sGCs; soluble guanylate cyclase stimulators.

We detected a significant association of PDE5A gene expression level in the aorta with the risk of CAD (per 1-SD increase in gene expression level, bSMR = 0.171, PSMR = 9.12 × 10−06, PHEIDI = 0.338), and a nominal association with the risk of MI and T2D (Supplementary material online, Table S13Figure 3, Fig. S3).

GUCY1A3 gene expression level in tibial artery was significantly associated with CAD risk (bSMR = −0.404, PSMR = 1.74 × 10−06, PHEIDI = 0.663) and MI risk (bSMR = −0.473, PSMR = 0.0001, PHEIDI = 0.873), and was nominally associated with ischaemic stroke and CKD risks. We observed a nominal association with the risk of HF, CKD, and T2D in the aorta, and with MI risk in the thyroid (Supplementary material online, Table S13Figure 3, Fig. S3).

Colocalization analysis

Colocalization analysis gave a high PP for a shared causal variant for tibial artery GUCY1A3 eQTL and CAD risk (H4 PP = 93.9%) and for tibial artery GUCY1A3 eQTL and MI risk (H4 PP = 95.3%) (Supplementary material online, Table S14, Fig. S4Figure 4). For aorta, PDE5A, eQTL, and CAD risk, coloc gave moderate PP for a shared causal variant (H4 PP = 47.8%, H3 PP = 52.2%).

Results from MR, SMR, and colocalization analyses. From left to right, the first graph shows MR results for PDE5 inhibitors (PDE5i) and sGC stimulators (sGCs) with associated outcomes. The second graph shows SMR results for PDE5A and GUCY1A3 and outcomes. The third graph shows the PP (%) for the scenario of distinct causal variants (H3) and of shared causal variant (H4) for the two traits—gene expression level and outcome risk. AAo, artery aorta; Atib, artery tibial; Thy, thyroid. CAD, coronary artery disease; MI, myocardial infarction; CKD, chronic kidney disease; T2D, type 2 diabetes.
Figure 4

Results from MR, SMR, and colocalization analyses. From left to right, the first graph shows MR results for PDE5 inhibitors (PDE5i) and sGC stimulators (sGCs) with associated outcomes. The second graph shows SMR results for PDE5A and GUCY1A3 and outcomes. The third graph shows the PP (%) for the scenario of distinct causal variants (H3) and of shared causal variant (H4) for the two traits—gene expression level and outcome risk. AAo, artery aorta; Atib, artery tibial; Thy, thyroid. CAD, coronary artery disease; MI, myocardial infarction; CKD, chronic kidney disease; T2D, type 2 diabetes.

Discussion

Our study utilised an integrative approach that combines MR, SMR, and colocalization analyses to investigate the effects of emerging antihypertensive drug classes on a range of cardiometabolic and kidney diseases. We confirm that genetically predicted lower SBP is causally associated with reduced risks of all outcomes, in concordance with evidence from previous studies.24,25 We found protective effects of genetically proxied AGTi, ERA, sGCs, and PDE5i for CAD, MI, and ischaemic stroke, and the protective effect of sGCs for CKD. Furthermore, we detected significant associations between the expression levels of genes (GUCY1A3 and PDE5A) and the risk of CAD and MI.

Our analyses demonstrate that the effects of certain drug classes differ significantly from general SBP-lowering effects. For instance, PDE5i showed a more pronounced effect on CAD, and sGCs on CAD, MI, and CKD. While these discrepancies suggest additional cardioprotective pathways, the exact alternative mechanisms remain unknown. Future work should aim to elucidate these mechanisms to further validate our findings.

Our study supports the effectiveness of sGCs in reducing the risks of CAD, MI, and CKD. These findings align with previous research highlighting the role of NO-sGC-cGMP pathway in cardiovascular protection.26,27 The GUCY1A3 gene, which encodes an alpha subunit of the sGC complex, has been linked to CAD and MI in large-scale GWAS.26,27 Our results show that increased GUCY1A3 expression in the tibial artery is associated with lower SBP and a reduced risk of CAD and MI, reinforcing the potential of sGC stimulation as a therapeutic strategy for CAD management.

PDE5i, commonly used for erectile dysfunction and PAH, was also found to have cardioprotective effects.28 PDE5i inhibits the breakdown of cGMP, thereby enhancing NO activity, which associated with cardiovascular benefits. Our MR study supports this, showing an association between PDE5i and reduced CAD and ischaemic stroke risks. This was corroborated by SMR findings, which linked increased PDE5A expression in the aorta to higher SBP and increased CAD risk. The beneficial effects of PDE5i for CAD and MI were reported in a recent MR study by Xiao et al.29 Our findings complement this and provide further insights into the cardioprotective potential of PDE5i and other emerging antihypertensive therapies across a range of CKM outcomes by integrating MR, SMR, and colocalization analyses.

Zilebesiran, an investigational siRNA therapeutic agent, inhibits the hepatic synthesis of angiotensinogen—a precursor protein in the renin-angiotensin system. Treatment with zilebesiran showed promising antihypertensive effects.7 Our study supports the protective effect of AGTi for CAD and ischaemic stroke, aligning with the well-established role of RAS in the cardiovascular system.

ERAs block endothelin binding to its receptors, reducing vasoconstriction and aldosterone secretion. ERAs are mainly indicated for PAH; however, recent research suggests the endothelin system's therapeutic potential in other CVDs, including resistant hypertension and microvascular angina.5 Our study supports the cardioprotective effect of ERAs for CAD, MI, and ischaemic stroke.

While emerging agents offer potential benefits for hypertension and CVDs, known side effects, such as fluid retention in patients using ERA,5 may limit their widespread use, particularly in patients with HF or renal impairment. This highlights the necessity of stratifying patients to optimize benefit-risk profiles. While monitoring and combination therapies may mitigate adverse effects, further research is necessary to elucidate the long-term safety profiles across diverse populations.

A key strength of our study is the comprehensive investigation of emerging antihypertensive drug classes at both the drug class and individual target gene expression levels across a broad spectrum of outcomes. The integration of MR, SMR, and colocalization analyses enhances the credibility of our findings. The convergence of results across different analytical approaches, particularly for PDE5i and sGCs, underscores the robustness of our conclusions.

However, our study has limitations. The summary data used were restricted to individuals of European descent, which may limit the generalizability of our findings. MR estimates reflect the lifetime effect of exposure, which may differ from the effect of clinical interventions initiated later in life. However, MR remains valuable for detecting the existence and directionality of causal effects. As genetic variants may affect other genes or pathways beyond the gene of interest, selecting variants within a 100 kb window of the gene may introduce pleiotropy in the MR analysis. Limited availability of eQTL data for certain tissues may lead to tissue misspecification. Larger eQTL studies with sufficient sample sizes are needed to alleviate this issue. The Bonferroni correction can be overly stringent and may reduce sensitivity; therefore, nominal associations warrant further investigation. The potential overlap between participants in the exposure and outcome GWAS datasets could bias the MR estimates towards observational associations. However, given the strong associations between the genetic instruments and exposures, the impact of such bias is likely minimal.30 The GWAS for SBP was adjusted for BMI and medication use, which could introduce bias.12 We addressed this by conducting sensitivity analyses using GWAS without these adjustments, yielding consistent results.

Conclusion

Our findings highlight the cardioprotective potential of emerging antihypertensive therapies, including PDE5 inhibitors, sGC stimulators, and ERAs, across a broad range of cardiovascular and renal outcomes. These results underscore the need for targeted clinical trials to validate the efficacy and safety of these therapies, particularly in patients with resistant hypertension or high cardiovascular risk. Additionally, further research is required to elucidate the mechanisms underlying the observed effects beyond BP lowering, which may inform personalised treatment strategies for hypertension management and CVD prevention.

Acknowledgement

N.N.L. and S.P. acknowledge the support provided by the Pontecorvo Chair of Pharmacogenomics endowment.

Author contribution

Conceptualisation: S.P.; Data curation: N.N.L.; Formal analysis: N.N.L.; Methodology: N.N.L., T.Q.B., D.G. and S.P.; Supervision: J.M., D.G., and S.P.; Writing—original draft: N.N.L.; Writing—review & editing: N.N.L., T.Q.B., J.M., D.G., and S.P.

Funding

S.P. is supported by the British Heart Foundation Centre of Excellence Award (RE/18/6/34 217) and the United Kingdom Research and Innovation Strength in Places Fund (SIPF00007/1). T.Q.B.T. is supported by a British Heart Foundation MBPhD Studentship (FS/MBPhD/22/28 005).

Conflict of interest: None declared.

References

1.

Mills
 
KT
,
Stefanescu
 
A
,
He
 
J
.
The global epidemiology of hypertension
.
Nat Rev Nephrol
 
2020
;
16
:
223
237
.

2.

McEvoy
 
JW
,
McCarthy
 
CP
,
Bruno
 
RM
,
Brouwers
 
S
,
Canavan
 
MD
,
Ceconi
 
C
,
Christodorescu
 
RM
,
Daskalopoulou
 
SS
,
Ferro
 
CJ
,
Gerdts
 
E
,
Hanssen
 
H
,
Harris
 
J
,
Lauder
 
L
,
McManus
 
RJ
,
Molloy
 
GJ
,
Rahimi
 
K
,
Regitz-Zagrosek
 
V
,
Rossi
 
GP
,
Sandset
 
EC
,
Scheenaerts
 
B
,
Staessen
 
JA
,
Uchmanowicz
 
I
,
Volterrani
 
M
,
Touyz
 
RM
,
Abreu
 
A
,
Olsen
 
MH
,
Ambrosetti
 
M
,
Androulakis
 
E
,
Bang
 
LE
,
Bech
 
JN
,
Borger
 
MA
,
Boutouyrie
 
P
,
Bronze
 
L
,
Buccheri
 
S
,
Dalmau
 
R
,
De Pablo Zarzosa
 
MC
,
Delles
 
C
,
Fiuza
 
MM
,
Gabulova
 
R
,
Haugen
 
BO
,
Heiss
 
C
,
Ibanez
 
B
,
James
 
S
,
Kapil
 
V
,
Kayikçioglu
 
M
,
Køber
 
L
,
Koskinas
 
KC
,
Locati
 
ET
,
MacDonald
 
S
,
Mihailidou
 
AS
,
Mihaylova
 
B
,
Mindham
 
R
,
Mortensen
 
MB
,
Nardai
 
S
,
Neubeck
 
L
,
Nielsen
 
JC
,
Nilsson
 
PM
,
Pasquet
 
AA
,
Pedro
 
MM
,
Prescott
 
E
,
Rakisheva
 
A
,
Rietzschel
 
E
,
Rocca
 
B
,
Rossello
 
X
,
Schmid
 
J-P
,
Shantsila
 
E
,
Sudano
 
I
,
Timóteo
 
AT
,
Tsivgoulis
 
G
,
Ungar
 
A
,
Vaartjes
 
I
,
Visseren
 
F
,
Voeller
 
H
,
Vrints
 
C
,
Witkowski
 
A
,
Zennaro
 
M-C
,
Zeppenfeld
 
K
,
Shuka
 
N
,
Laredj
 
N
,
Pavo
 
N
,
Mirzoyev
 
U
,
van de Borne
 
P
,
Sokolović
 
Še
,
Postadzhiyan
 
A
,
Samardzic
 
J
,
Agathangelou
 
P
,
Widimsky
 
J
,
Olsen
 
MH
,
El-Kilany
 
WM
,
Pauklin
 
P
,
Laukkanen
 
JA
,
Boulestreau
 
R
,
Tsinamdzgvrishvili
 
B
,
Kintscher
 
U
,
Marketou
 
M
,
Páll
 
D
,
Hrafnkelsdóttir
 
ÞóJ
,
Dolan
 
E
,
Wolak
 
T
,
Bilo
 
G
,
Tundybayeva
 
MK
,
Mirrakhimov
 
E
,
Trusinskis
 
K
,
Kiwan
 
G
,
Msalem
 
O
,
Badarienė
 
J
,
Banu
 
C-A
,
Balbi
 
MM
,
Caraus
 
A
,
Boskovic
 
A
,
Mouine
 
N
,
Vromen
 
T
,
Bosevski
 
M
,
Midtbø
 
HB
,
Doroszko
 
A
,
Dores
 
H
,
Badila
 
E
,
Bini
 
R
,
Simić
 
DV
,
Fras
 
Z
,
Mazón
 
P
,
Spaak
 
J
,
Burkard
 
T
,
Barakat
 
E
,
Abdessalem
 
S
,
Gunes
 
Y
,
Sirenko
 
YM
,
Brady
 
AJB
,
Khamidullaeva
 
GA
.
2024 ESC guidelines for the management of elevated blood pressure and hypertension
.
Eur Heart J
 
2024
;
45
:
3912
4018
.

3.

Tzoumas
 
N
,
Farrah
 
TE
,
Dhaun
 
N
,
Webb
 
DJ
.
Established and emerging therapeutic uses of PDE type 5 inhibitors in cardiovascular disease
.
Br J Pharmacol
 
2020
;
177
:
5467
5488
.

4.

Armstrong
 
PW
,
Pieske
 
B
,
Anstrom
 
KJ
,
Ezekowitz
 
J
,
Hernandez
 
AF
,
Butler
 
J
,
Lam
 
CSP
,
Ponikowski
 
P
,
Voors
 
AA
,
Jia
 
G
,
McNulty
 
SE
,
Patel
 
MJ
,
Roessig
 
L
,
Koglin
 
J
,
O'Connor
 
CM
.
Vericiguat in patients with heart failure and reduced ejection fraction
.
N Engl J Med
 
2020
;
382
:
1883
1893
.

5.

Schlaich
 
MP
,
Bellet
 
M
,
Weber
 
MA
,
Danaietash
 
P
,
Bakris
 
GL
,
Flack
 
JM
,
Dreier
 
RF
,
Sassi-Sayadi
 
M
,
Haskell
 
LP
,
Narkiewicz
 
K
,
Wang
 
J-G
,
Reid
 
C
,
Schlaich
 
M
,
Katz
 
I
,
Ajani
 
A
,
Biswas
 
S
,
Esler
 
M
,
Elder
 
G
,
Roger
 
S
,
Colquhoun
 
D
,
Mooney
 
J
,
De Backer
 
T
,
Persu
 
A
,
Chaumont
 
M
,
Krzesinski
 
J-M
,
Vanassche
 
T
,
Girard
 
G
,
Pliamm
 
L
,
Schiffrin
 
E
,
Merali
 
F
,
Dresser
 
G
,
Vallee
 
M
,
Jolly
 
S
,
Chow
 
S
,
Wang
 
J
,
Mu
 
J
,
Yu
 
J
,
Yuan
 
H
,
Feng
 
Y
,
Zhang
 
X
,
Xie
 
J
,
Lin
 
L
,
Soucek
 
M
,
Widimsky
 
J
,
Cifkova
 
R
,
Vaclavik
 
J
,
Ullrych
 
M
,
Lukac
 
M
,
Rychlik
 
I
,
Guldager Lauridsen
 
T
,
Kantola
 
I
,
Taurio
 
J
,
Ukkola
 
O
,
Ormezzano
 
O
,
Gosse
 
P
,
Azizi
 
M
,
Courand
 
P-Y
,
Delsart
 
P
,
Tartiere
 
JM
,
Mahfoud
 
F
,
Schmieder
 
R
,
Stegbauer
 
J
,
Lurz
 
P
,
Koziolek
 
M
,
Ott
 
C
,
Toursarkissian
 
N
,
Tsioufis
 
K
,
Kyfnidis
 
K
,
Manolis
 
A
,
Patsilinakos
 
S
,
Zebekakis
 
P
,
Karavidas
 
A
,
Denes
 
P
,
Bezzegh
 
K
,
Zsom
 
M
,
Kovacs
 
L
,
Sharabi
 
Y
,
Elias
 
M
,
Sukholutsky
 
I
,
Yosefy
 
C
,
Kenis
 
I
,
Atar
 
S
,
Volpe
 
M
,
Maria Lorenza
 
M
,
Taddei
 
S
,
Grassi
 
G
,
Veglio
 
F
,
Son
 
JW
,
Kim
 
J-Y
,
Park
 
J-I
,
Lee
 
CH
,
Lee
 
H-Y
,
Raugaliene
 
R
,
Marcinkeviciene
 
JE
,
Kavaliauskiene
 
R
,
Deinum
 
J
,
Kroon
 
A
,
van den Born
 
B-J
,
Januszewicz
 
A
,
Tykarski
 
A
,
Walczewska
 
J
,
Gaciong
 
Z
,
Wiecek
 
A
,
Chrostowska
 
M
,
Kleinrok
 
A
,
Krekora
 
J
,
Kania
 
G
,
Podrazka-Szczepaniak
 
A
,
Golawski
 
C
,
Podziewski
 
M
,
Kaczmarek
 
B
,
Skoczylas
 
G
,
Wilkolaski
 
A
,
Wozniak
 
I
,
Janik-Palazzolo
 
M
,
Rewerska
 
B
,
Konradi
 
A
,
Shvarts
 
Y
,
Pecherina
 
T
,
Nikolaev
 
K
,
Liudmila
 
G
,
Orlikova
 
O
,
Mordovin
 
V
,
Petrochenkova
 
N
,
Kamalov
 
G
,
Kosmacheva
 
E
,
Nikolaev
 
K
,
Tyrenko
 
V
,
Gorbunov
 
V
,
Obrezan
 
A
,
Supryadkina
 
T
,
Ler
 
I
,
Kotenko
 
O
,
Kuzin
 
A
,
Martínez García
 
F
,
Redon
 
J
,
Oliveras
 
A
,
Beltran Romero
 
L
,
Shatylo
 
V
,
Rudenko
 
L
,
Bazylevych
 
A
,
Rudyk
 
Y
,
Karpenko
 
O
,
Stanislavchuk
 
M
,
Tseluyko
 
V
,
Kushnir
 
M
,
Asanov
 
E
,
Sirenko
 
Y
,
Yagensky
 
A
,
Collier
 
D
,
Gupta
 
P
,
Webb
 
D
,
MacLeod
 
M
,
McLay
 
J
,
Peace
 
A
,
Arora
 
S
,
Buchanan
 
P
,
Harris
 
R
,
Degarmo
 
R
,
Guillen
 
M
,
Karns
 
A
,
Neutel
 
J
,
Paliwal
 
Y
,
Pettis
 
K
,
Toth
 
PD
,
Wayne
 
JM
,
Butcher
 
MB
,
Diller
 
PM
,
Oparil
 
S
,
Calhoun
 
D
,
Brautigam
 
D
,
Flack
 
J
,
Goldman
 
JM
,
Rashidi
 
A
,
Aslam
 
N
,
Haley
 
W
,
Andrawis
 
N
,
Lang
 
B
,
Miller
 
R
,
Powell
 
J
,
Dewhurst
 
R
,
Pritchard
 
J
,
Khanna
 
D
,
Tang
 
D
,
Gabra
 
N
,
Park
 
J
,
Jones
 
C
,
Scott
 
C
,
Luna
 
B
,
Mussaji
 
M
,
Bhagwat
 
R
,
Bauer
 
M
,
McGinty
 
J
,
Nambiar
 
R
,
Sangrigoli
 
R
,
Davis
 
WR
,
Eaves
 
W
,
McGrew
 
F
,
Awad
 
A
,
Bolster
 
E
,
Scott
 
D
,
Kalirao
 
P
,
Dabel
 
P
,
Calhoun
 
W
,
Gouge
 
S
,
Warren
 
M
,
Lawrence
 
MK
,
Jamal
 
A
,
El-Shahawy
 
M
,
Mercado
 
C
,
Kumar
 
J
,
Velasquez-Mieyer
 
P
,
Busch
 
R
,
Lewis
 
T
,
Rich
 
L
.
Dual endothelin antagonist aprocitentan for resistant hypertension (PRECISION): a multicentre, blinded, randomised, parallel-group, phase 3 trial
.
Lancet
 
2022
;
400
:
1927
1937
.

6.

Kahlon
 
T
,
Carlisle
 
S
,
Otero Mostacero
 
D
,
Williams
 
N
,
Trainor
 
P
,
DeFilippis
 
AP
.
Angiotensinogen: more than its downstream products: evidence from population studies and novel therapeutics
.
JACC Heart Fail
 
2022
;
10
:
699
713
.

7.

Desai
 
AS
,
Webb
 
DJ
,
Taubel
 
J
,
Casey
 
S
,
Cheng
 
Y
,
Robbie
 
GJ
,
Foster
 
D
,
Huang
 
SA
,
Rhyee
 
S
,
Sweetser
 
MT
,
Bakris
 
GL
.
Zilebesiran, an RNA interference therapeutic agent for hypertension
.
N Engl J Med
 
2023
;
389
:
228
238
.

8.

Holmes
 
MV
,
Ala-Korpela
 
M
,
Smith
 
GD
.
Mendelian randomization in cardiometabolic disease: challenges in evaluating causality
.
Nat Rev Cardiol
 
2017
;
14
:
577
590
.

9.

Davey Smith
 
G
,
Ebrahim
 
S
.
Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease?
 
Int J Epidemiol
 
2003
;
32
:
1
22
.

10.

Zhu
 
Z
,
Zhang
 
F
,
Hu
 
H
,
Bakshi
 
A
,
Robinson
 
MR
,
Powell
 
JE
,
Montgomery
 
GW
,
Goddard
 
ME
,
Wray
 
NR
,
Visscher
 
PM
,
Yang
 
J
.
Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets
.
Nat Genet
 
2016
;
48
:
481
487
.

11.

Giambartolomei
 
C
,
Vukcevic
 
D
,
Schadt
 
EE
,
Franke
 
L
,
Hingorani
 
AD
,
Wallace
 
C
,
Plagnol
 
V
.
Bayesian test for colocalisation between pairs of genetic association studies using summary statistics
.
PLoS Genet
 
2014
;
10
:
e1004383
.

12.

Evangelou
 
E
,
Warren
 
HR
,
Mosen-Ansorena
 
D
,
Mifsud
 
B
,
Pazoki
 
R
,
Gao
 
H
,
Ntritsos
 
G
,
Dimou
 
N
,
Cabrera
 
CP
,
Karaman
 
I
,
Ng
 
FL
,
Evangelou
 
M
,
Witkowska
 
K
,
Tzanis
 
E
,
Hellwege
 
JN
,
Giri
 
A
,
Velez Edwards
 
DR
,
Sun
 
YV
,
Cho
 
K
,
Gaziano
 
JM
,
Wilson
 
PWF
,
Tsao
 
PS
,
Kovesdy
 
CP
,
Esko
 
T
,
Mägi
 
R
,
Milani
 
L
,
Almgren
 
P
,
Boutin
 
T
,
Debette
 
S
,
Ding
 
J
,
Giulianini
 
F
,
Holliday
 
EG
,
Jackson
 
AU
,
Li-Gao
 
R
,
Lin
 
W-Y
,
Luan
 
J'A
,
Mangino
 
M
,
Oldmeadow
 
C
,
Prins
 
BP
,
Qian
 
Y
,
Sargurupremraj
 
M
,
Shah
 
N
,
Surendran
 
P
,
Thériault
 
S
,
Verweij
 
N
,
Willems
 
SM
,
Zhao
 
J-H
,
Amouyel
 
P
,
Connell
 
J
,
de Mutsert
 
R
,
Doney
 
ASF
,
Farrall
 
M
,
Menni
 
C
,
Morris
 
AD
,
Noordam
 
R
,
Paré
 
G
,
Poulter
 
NR
,
Shields
 
DC
,
Stanton
 
A
,
Thom
 
S
,
Abecasis
 
G
,
Amin
 
N
,
Arking
 
DE
,
Ayers
 
KL
,
Barbieri
 
CM
,
Batini
 
C
,
Bis
 
JC
,
Blake
 
T
,
Bochud
 
M
,
Boehnke
 
M
,
Boerwinkle
 
E
,
Boomsma
 
DI
,
Bottinger
 
EP
,
Braund
 
PS
,
Brumat
 
M
,
Campbell
 
A
,
Campbell
 
H
,
Chakravarti
 
A
,
Chambers
 
JC
,
Chauhan
 
G
,
Ciullo
 
M
,
Cocca
 
M
,
Collins
 
F
,
Cordell
 
HJ
,
Davies
 
G
,
de Borst
 
MH
,
de Geus
 
EJ
,
Deary
 
IJ
,
Deelen
 
J
,
Del Greco M.
 
F
,
Demirkale
 
CY
,
Dörr
 
M
,
Ehret
 
GB
,
Elosua
 
R
,
Enroth
 
S
,
Erzurumluoglu
 
AM
,
Ferreira
 
T
,
Frånberg
 
M
,
Franco
 
OH
,
Gandin
 
I
,
Gasparini
 
P
,
Giedraitis
 
V
,
Gieger
 
C
,
Girotto
 
G
,
Goel
 
A
,
Gow
 
AJ
,
Gudnason
 
V
,
Guo
 
X
,
Gyllensten
 
U
,
Hamsten
 
A
,
Harris
 
TB
,
Harris
 
SE
,
Hartman
 
CA
,
Havulinna
 
AS
,
Hicks
 
AA
,
Hofer
 
E
,
Hofman
 
A
,
Hottenga
 
J-J
,
Huffman
 
JE
,
Hwang
 
S-J
,
Ingelsson
 
E
,
James
 
A
,
Jansen
 
R
,
Jarvelin
 
M-R
,
Joehanes
 
R
,
Johansson
 
Ås
,
Johnson
 
AD
,
Joshi
 
PK
,
Jousilahti
 
P
,
Jukema
 
JW
,
Jula
 
A
,
Kähönen
 
M
,
Kathiresan
 
S
,
Keavney
 
BD
,
Khaw
 
K-T
,
Knekt
 
P
,
Knight
 
J
,
Kolcic
 
I
,
Kooner
 
JS
,
Koskinen
 
S
,
Kristiansson
 
K
,
Kutalik
 
Z
,
Laan
 
M
,
Larson
 
M
,
Launer
 
LJ
,
Lehne
 
B
,
Lehtimäki
 
T
,
Liewald
 
DCM
,
Lin
 
L
,
Lind
 
L
,
Lindgren
 
CM
,
Liu
 
Y
,
Loos
 
RJF
,
Lopez
 
LM
,
Lu
 
Y
,
Lyytikäinen
 
L-P
,
Mahajan
 
A
,
Mamasoula
 
C
,
Marrugat
 
J
,
Marten
 
J
,
Milaneschi
 
Y
,
Morgan
 
A
,
Morris
 
AP
,
Morrison
 
AC
,
Munson
 
PJ
,
Nalls
 
MA
,
Nandakumar
 
P
,
Nelson
 
CP
,
Niiranen
 
T
,
Nolte
 
IM
,
Nutile
 
T
,
Oldehinkel
 
AJ
,
Oostra
 
BA
,
O'Reilly
 
PF
,
Org
 
E
,
Padmanabhan
 
S
,
Palmas
 
W
,
Palotie
 
A
,
Pattie
 
A
,
Penninx
 
BWJH
,
Perola
 
M
,
Peters
 
A
,
Polasek
 
O
,
Pramstaller
 
PP
,
Nguyen
 
QT
,
Raitakari
 
OT
,
Ren
 
M
,
Rettig
 
R
,
Rice
 
K
,
Ridker
 
PM
,
Ried
 
JS
,
Riese
 
H
,
Ripatti
 
S
,
Robino
 
A
,
Rose
 
LM
,
Rotter
 
JI
,
Rudan
 
I
,
Ruggiero
 
D
,
Saba
 
Y
,
Sala
 
CF
,
Salomaa
 
V
,
Samani
 
NJ
,
Sarin
 
A-P
,
Schmidt
 
R
,
Schmidt
 
H
,
Shrine
 
N
,
Siscovick
 
D
,
Smith
 
AV
,
Snieder
 
H
,
Sõber
 
S
,
Sorice
 
R
,
Starr
 
JM
,
Stott
 
DJ
,
Strachan
 
DP
,
Strawbridge
 
RJ
,
Sundström
 
J
,
Swertz
 
MA
,
Taylor
 
KD
,
Teumer
 
A
,
Tobin
 
MD
,
Tomaszewski
 
M
,
Toniolo
 
D
,
Traglia
 
M
,
Trompet
 
S
,
Tuomilehto
 
J
,
Tzourio
 
C
,
Uitterlinden
 
AG
,
Vaez
 
A
,
van der Most
 
PJ
,
van Duijn
 
CM
,
Vergnaud
 
A-C
,
Verwoert
 
GC
,
Vitart
 
V
,
Völker
 
U
,
Vollenweider
 
P
,
Vuckovic
 
D
,
Watkins
 
H
,
Wild
 
SH
,
Willemsen
 
G
,
Wilson
 
JF
,
Wright
 
AF
,
Yao
 
J
,
Zemunik
 
T
,
Zhang
 
W
,
Attia
 
JR
,
Butterworth
 
AS
,
Chasman
 
DI
,
Conen
 
D
,
Cucca
 
F
,
Danesh
 
J
,
Hayward
 
C
,
Howson
 
JMM
,
Laakso
 
M
,
Lakatta
 
EG
,
Langenberg
 
C
,
Melander
 
O
,
Mook-Kanamori
 
DO
,
Palmer
 
CNA
,
Risch
 
L
,
Scott
 
RA
,
Scott
 
RJ
,
Sever
 
P
,
Spector
 
TD
,
van der Harst
 
P
,
Wareham
 
NJ
,
Zeggini
 
E
,
Levy
 
D
,
Munroe
 
PB
,
Newton-Cheh
 
C
,
Brown
 
MJ
,
Metspalu
 
A
,
Hung
 
AM
,
O'Donnell
 
CJ
,
Edwards
 
TL
,
Psaty
 
BM
,
Tzoulaki
 
I
,
Barnes
 
MR
,
Wain
 
LV
,
Elliott
 
P
,
Caulfield
 
MJ
.,
Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits
.
Nat Genet
 
2018
;
50
:
1412
1425
.

13.

Palmer
 
TM
,
Lawlor
 
DA
,
Harbord
 
RM
,
Sheehan
 
NA
,
Tobias
 
JH
,
Timpson
 
NJ
,
Smith
 
GD
,
Sterne
 
JA
.
Using multiple genetic variants as instrumental variables for modifiable risk factors
.
Stat Methods Med Res
 
2011
;
21
:
223
242
.

14.

Aguet
 
F
,
Anand
 
S
,
Ardlie
 
KG
,
Gabriel
 
S
,
Getz
 
GA
,
Graubert
 
A
,
Hadley
 
K
,
Handsaker
 
RE
,
Huang
 
KH
,
Kashin
 
S
,
Li
 
X
,
MacArthur
 
DG
,
Meier
 
SR
,
Nedzel
 
JL
,
Nguyen
 
DT
,
Segrè
 
AV
,
Todres
 
E
,
Balliu
 
B
,
Barbeira
 
AN
,
Battle
 
A
,
Bonazzola
 
R
,
Brown
 
A
,
Brown
 
CD
,
Castel
 
SE
,
Conrad
 
DF
,
Cotter
 
DJ
,
Cox
 
N
,
Das
 
S
,
de Goede
 
OM
,
Dermitzakis
 
ET
,
Einson
 
J
,
Engelhardt
 
BE
,
Eskin
 
E
,
Eulalio
 
TY
,
Ferraro
 
NM
,
Flynn
 
ED
,
Fresard
 
L
,
Gamazon
 
ER
,
Garrido-Martín
 
D
,
Gay
 
NR
,
Gloudemans
 
MJ
,
Guigó
 
R
,
Hame
 
AR
,
He
 
Y
,
Hoffman
 
PJ
,
Hormozdiari
 
F
,
Hou
 
L
,
Im
 
HK
,
Jo
 
B
,
Kasela
 
S
,
Kellis
 
M
,
Kim-Hellmuth
 
S
,
Kwong
 
A
,
Lappalainen
 
T
,
Li
 
X
,
Liang
 
Y
,
Mangul
 
S
,
Mohammadi
 
P
,
Montgomery
 
SB
,
Muñoz-Aguirre
 
M
,
Nachun
 
DC
,
Nobel
 
AB
,
Oliva
 
M
,
Park
 
Y
,
Park
 
Y
,
Parsana
 
P
,
Rao
 
AS
,
Reverter
 
F
,
Rouhana
 
JM
,
Sabatti
 
C
,
Saha
 
A
,
Stephens
 
M
,
Stranger
 
BE
,
Strober
 
BJ
,
Teran
 
NA
,
Viñuela
 
A
,
Wang
 
G
,
Wen
 
X
,
Wright
 
F
,
Wucher
 
V
,
Zou
 
Y
,
Ferreira
 
PG
,
Li
 
G
,
Melé
 
M
,
Yeger-Lotem
 
E
,
Barcus
 
ME
,
Bradbury
 
D
,
Krubit
 
T
,
McLean
 
JA
,
Qi
 
L
,
Robinson
 
K
,
Roche
 
NV
,
Smith
 
AM
,
Sobin
 
L
,
Tabor
 
DE
,
Undale
 
A
,
Bridge
 
J
,
Brigham
 
LE
,
Foster
 
BA
,
Gillard
 
BM
,
Hasz
 
R
,
Hunter
 
M
,
Johns
 
C
,
Johnson
 
M
,
Karasik
 
E
,
Kopen
 
G
,
Leinweber
 
WF
,
McDonald
 
A
,
Moser
 
MT
,
Myer
 
K
,
Ramsey
 
KD
,
Roe
 
B
,
Shad
 
S
,
Thomas
 
JA
,
Walters
 
G
,
Washington
 
M
,
Wheeler
 
J
,
Jewell
 
SD
,
Rohrer
 
DC
,
Valley
 
DR
,
Davis
 
DA
,
Mash
 
DC
,
Branton
 
PA
,
Barker
 
LK
,
Gardiner
 
HM
,
Mosavel
 
M
,
Siminoff
 
LA
,
Flicek
 
P
,
Haeussler
 
M
,
Juettemann
 
T
,
Kent
 
WJ
,
Lee
 
CM
,
Powell
 
CC
,
Rosenbloom
 
KR
,
Ruffier
 
M
,
Sheppard
 
D
,
Taylor
 
K
,
Trevanion
 
SJ
,
Zerbino
 
DR
,
Abell
 
NS
,
Akey
 
J
,
Chen
 
L
,
Demanelis
 
K
,
Doherty
 
JA
,
Feinberg
 
AP
,
Hansen
 
KD
,
Hickey
 
PF
,
Jasmine
 
F
,
Jiang
 
L
,
Kaul
 
R
,
Kibriya
 
MG
,
Li
 
JB
,
Li
 
Q
,
Lin
 
S
,
Linder
 
SE
,
Pierce
 
BL
,
Rizzardi
 
LF
,
Skol
 
AD
,
Smith
 
KS
,
Snyder
 
M
,
Stamatoyannopoulos
 
J
,
Tang
 
H
,
Wang
 
M
,
Carithers
 
LJ
,
Guan
 
P
,
Koester
 
SE
,
Little
 
AR
,
Moore
 
HM
,
Nierras
 
CR
,
Rao
 
AK
,
Vaught
 
JB
,
Volpi
 
S
.
The GTEx Consortium atlas of genetic regulatory effects across human tissues
.
Science
 
2020
;
369
:
1318
1330
.

15.

Rapsomaniki
 
E
,
Timmis
 
A
,
George
 
J
,
Pujades-Rodriguez
 
M
,
Shah
 
AD
,
Denaxas
 
S
,
White
 
IR
,
Caulfield
 
MJ
,
Deanfield
 
JE
,
Smeeth
 
L
,
Williams
 
B
,
Hingorani
 
A
,
Hemingway
 
H
.
Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people
.
Lancet
 
2014
;
383
:
1899
1911
.

16.

Anderson
 
AH
,
Yang
 
W
,
Townsend
 
RR
,
Pan
 
Q
,
Chertow
 
GM
,
Kusek
 
JW
,
Charleston
 
J
,
He
 
J
,
Kallem
 
R
,
Lash
 
JP
,
Miller
 
ER
,
Rahman
 
M
,
Steigerwalt
 
S
,
Weir
 
M
,
Wright
 
JT
,
Feldman
 
HI
.,
Time-updated systolic blood pressure and the progression of chronic kidney disease: a cohort study
.
Ann Intern Med
 
2015
;
162
:
258
265
.

17.

Emdin
 
CA
,
Anderson
 
SG
,
Woodward
 
M
,
Rahimi
 
K
.
Usual blood pressure and risk of new-onset diabetes: evidence from 4.1 million adults and a meta-analysis of prospective studies
.
J Am Coll Cardiol
 
2015
;
66
:
1552
1562
.

18.

Bowden
 
J
,
Davey Smith
 
G
,
Haycock
 
PC
,
Burgess
 
S
.
Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator
.
Genet Epidemiol
 
2016
;
40
:
304
314
.

19.

Bowden
 
J
,
Davey Smith
 
G
,
Burgess
 
S
.
Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression
.
Int J Epidemiol
 
2015
;
44
:
512
525
.

20.

Neale
 
B
.
Rapid GWAS of Thousands of Phenotypes in the UK Biobank 2020.
Accessed on 30 June 2024. https://www.nealelab.is/uk-biobank/ukbround2announcement

21.

Karhunen
 
V
,
Daghlas
 
I
,
Zuber
 
V
,
Vujkovic
 
M
,
Olsen
 
AK
,
Knudsen
 
LB
,
Haynes
 
WG
,
Howson
 
JMM
,
Gill
 
D
.
Leveraging human genetic data to investigate the cardiometabolic effects of glucose-dependent insulinotropic polypeptide signalling
.
Diabetologia
 
2021
;
64
:
2773
2778
.

22.

Hemani
 
G
,
Zheng
 
J
,
Elsworth
 
B
,
Wade
 
KH
,
Haberland
 
V
,
Baird
 
D
,
Laurin
 
C
,
Burgess
 
S
,
Bowden
 
J
,
Langdon
 
R
,
Tan
 
VY
,
Yarmolinsky
 
J
,
Shihab
 
HA
,
Timpson
 
NJ
,
Evans
 
DM
,
Relton
 
C
,
Martin
 
RM
,
Davey Smith
 
G
,
Gaunt
 
TR
,
Haycock
 
PC
.
The MR-Base platform supports systematic causal inference across the human phenome
.
eLife
 
2018
;
7
:
e34408
.

23.

Yavorska
 
OO
,
Burgess
 
S
.
MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data
.
Int J Epidemiol
 
2017
;
46
:
1734
1739
.

24.

Le
 
NN
,
Tran
 
TQB
,
Lip
 
S
,
McCallum
 
L
,
McClure
 
J
,
Dominiczak
 
AF
,
Gill
 
D
,
Padmanabhan
 
S
.
Unravelling the distinct effects of systolic and diastolic blood pressure using Mendelian randomisation
.
Genes (Basel)
 
2022
;
13
:
1226
.

25.

Lewington
 
S
,
Clarke
 
R
,
Qizilbash
 
N
,
Peto
 
R
,
Collins
 
R
.
Prospective studies C. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies
.
Lancet
 
2002
;
360
:
1903
1913
.

26.

Kessler
 
T
,
Wobst
 
J
,
Wolf
 
B
,
Eckhold
 
J
,
Vilne
 
B
,
Hollstein
 
R
,
von Ameln
 
S
,
Dang
 
TA
,
Sager
 
HB
,
Moritz Rumpf
 
P
,
Aherrahrou
 
R
,
Kastrati
 
A
,
Björkegren
 
JLM
,
Erdmann
 
J
,
Lusis
 
AJ
,
Civelek
 
M
,
Kaiser
 
FJ
,
Schunkert
 
H
.
Functional characterization of the GUCY1A3 coronary artery disease risk locus
.
Circulation
 
2017
;
136
:
476
489
.

27.

Nikpay
 
M
,
Goel
 
A
,
Won
 
HH
,
Hall
 
LM
,
Willenborg
 
C
,
Kanoni
 
S
,
Saleheen
 
D
,
Kyriakou
 
T
,
Nelson
 
CP
,
Hopewell
 
JC
.
A comprehensive 1,000 genomes-based genome-wide association meta-analysis of coronary artery disease
.
Nat Genet
 
2015
;
47
:
1121
1130
.

28.

Hutchings
 
DC
,
Anderson
 
SG
,
Caldwell
 
JL
,
Trafford
 
AW
.
Phosphodiesterase-5 inhibitors and the heart: compound cardioprotection?
 
Heart
 
2018
;
104
:
1244
1250
.

29.

Xiao
 
J
,
Zhang
 
N
,
Gao
 
Z
,
Wei
 
Y
,
Wei
 
H
,
Qiu
 
Z
,
Sundquist
 
K
,
Sundquist
 
J
,
Jianguang
 
J
,
Huang
 
W
.
Phosphodiesterase 5 and its inhibitors with ischemic heart disease: a Mendelian randomization analysis and a real-world study
.
Eur Heart J Cardiovasc Pharmacother
 
2024
;
11
:75–83.

30.

Sanderson
 
E
,
Glymour
 
MM
,
Holmes
 
MV
,
Kang
 
H
,
Morrison
 
J
,
Munafò
 
MR
,
Palmer
 
T
,
Schooling
 
CM
,
Wallace
 
C
,
Zhao
 
Q
,
Davey Smith
 
G
.
Mendelian randomization
.
Nat Rev Methods Primers
 
2022
;
2
:6.

31.

Nielsen
 
JB
,
Thorolfsdottir
 
RB
,
Fritsche
 
LG
,
Zhou
 
W
,
Skov
 
MW
,
Graham
 
SE
,
Herron
 
TJ
,
McCarthy
 
S
,
Schmidt
 
EM
,
Sveinbjornsson
 
G
,
Surakka
 
I
,
Mathis
 
MR
,
Yamazaki
 
M
,
Crawford
 
RD
,
Gabrielsen
 
ME
,
Skogholt
 
AH
,
Holmen
 
OL
,
Lin
 
M
,
Wolford
 
BN
,
Dey
 
R
,
Dalen
 
H
,
Sulem
 
P
,
Chung
 
JH
,
Backman
 
JD
,
Arnar
 
DO
,
Thorsteinsdottir
 
U
,
Baras
 
A
,
O'Dushlaine
 
C
,
Holst
 
AG
,
Wen
 
X
,
Hornsby
 
W
,
Dewey
 
FE
,
Boehnke
 
M
,
Kheterpal
 
S
,
Mukherjee
 
B
,
Lee
 
S
,
Kang
 
HM
,
Holm
 
H
,
Kitzman
 
J
,
Shavit
 
JA
,
Jalife
 
J
,
Brummett
 
CM
,
Teslovich
 
TM
,
Carey
 
DJ
,
Gudbjartsson
 
DF
,
Stefansson
 
K
,
Abecasis
 
GR
,
Hveem
 
K
,
Willer
 
CJ
.
Biobank-driven genomic discovery yields new insight into atrial fibrillation biology
.
Nat Genet
 
2018
;
50
:
1234
1239
.

32.

Shah
 
S
,
Henry
 
A
,
Roselli
 
C
,
Lin
 
H
,
Sveinbjörnsson
 
G
,
Fatemifar
 
G
,
Hedman
 
ÅsK
,
Wilk
 
JB
,
Morley
 
MP
,
Chaffin
 
MD
,
Helgadottir
 
A
,
Verweij
 
N
,
Dehghan
 
A
,
Almgren
 
P
,
Andersson
 
C
,
Aragam
 
KG
,
Ärnlöv
 
J
,
Backman
 
JD
,
Biggs
 
ML
,
Bloom
 
HL
,
Brandimarto
 
J
,
Brown
 
MR
,
Buckbinder
 
L
,
Carey
 
DJ
,
Chasman
 
DI
,
Chen
 
X
,
Chen
 
X
,
Chung
 
J
,
Chutkow
 
W
,
Cook
 
JP
,
Delgado
 
GE
,
Denaxas
 
S
,
Doney
 
AS
,
Dörr
 
M
,
Dudley
 
SC
,
Dunn
 
ME
,
Engström
 
G
,
Esko
 
T
,
Felix
 
SB
,
Finan
 
C
,
Ford
 
I
,
Ghanbari
 
M
,
Ghasemi
 
S
,
Giedraitis
 
V
,
Giulianini
 
F
,
Gottdiener
 
JS
,
Gross
 
S
,
Guðbjartsson
 
DF
,
Gutmann
 
R
,
Haggerty
 
CM
,
van der Harst
 
P
,
Hyde
 
CL
,
Ingelsson
 
E
,
Jukema
 
JW
,
Kavousi
 
M
,
Khaw
 
K-T
,
Kleber
 
ME
,
Køber
 
L
,
Koekemoer
 
A
,
Langenberg
 
C
,
Lind
 
L
,
Lindgren
 
CM
,
London
 
B
,
Lotta
 
LA
,
Lovering
 
RC
,
Luan
 
J'A
,
Magnusson
 
P
,
Mahajan
 
A
,
Margulies
 
KB
,
März
 
W
,
Melander
 
O
,
Mordi
 
IR
,
Morgan
 
T
,
Morris
 
AD
,
Morris
 
AP
,
Morrison
 
AC
,
Nagle
 
MW
,
Nelson
 
CP
,
Niessner
 
A
,
Niiranen
 
T
,
O'Donoghue
 
ML
,
Owens
 
AT
,
Palmer
 
CNA
,
Parry
 
HM
,
Perola
 
M
,
Portilla-Fernandez
 
E
,
Psaty
 
BM
,
Abecasis
 
G
,
Backman
 
J
,
Bai
 
X
,
Balasubramanian
 
S
,
Banerjee
 
N
,
Baras
 
A
,
Barnard
 
L
,
Beechert
 
C
,
Blumenfeld
 
A
,
Cantor
 
M
,
Chai
 
Y
,
Chung
 
J
,
Coppola
 
G
,
Damask
 
A
,
Dewey
 
F
,
Economides
 
A
,
Eom
 
G
,
Forsythe
 
C
,
Fuller
 
ED
,
Gu
 
Z
,
Gurski
 
L
,
Guzzardo
 
PM
,
Habegger
 
L
,
Hahn
 
Y
,
Hawes
 
A
,
van Hout
 
C
,
Jones
 
MB
,
Khalid
 
S
,
Lattari
 
M
,
Li
 
A
,
Lin
 
N
,
Liu
 
D
,
Lopez
 
A
,
Manoochehri
 
K
,
Marchini
 
J
,
Marcketta
 
A
,
Maxwell
 
EK
,
McCarthy
 
S
,
Mitnaul
 
LJ
,
O'Dushlaine
 
C
,
Overton
 
JD
,
Padilla
 
MS
,
Paulding
 
C
,
Penn
 
J
,
Pradhan
 
M
,
Reid
 
JG
,
Schleicher
 
TD
,
Schurmann
 
C
,
Shuldiner
 
A
,
Staples
 
JC
,
Sun
 
D
,
Toledo
 
K
,
Ulloa
 
RH
,
Widom
 
L
,
Wolf
 
SE
,
Yadav
 
A
,
Ye
 
B
,
Rice
 
KM
,
Ridker
 
PM
,
Romaine
 
SPR
,
Rotter
 
JI
,
Salo
 
P
,
Salomaa
 
V
,
van Setten
 
J
,
Shalaby
 
AA
,
Smelser
 
DT
,
Smith
 
NL
,
Stender
 
S
,
Stott
 
DJ
,
Svensson
 
P
,
Tammesoo
 
M-L
,
Taylor
 
KD
,
Teder-Laving
 
M
,
Teumer
 
A
,
Thorgeirsson
 
G
,
Thorsteinsdottir
 
U
,
Torp-Pedersen
 
C
,
Trompet
 
S
,
Tyl
 
B
,
Uitterlinden
 
AG
,
Veluchamy
 
A
,
Völker
 
U
,
Voors
 
AA
,
Wang
 
X
,
Wareham
 
NJ
,
Waterworth
 
D
,
Weeke
 
PE
,
Weiss
 
R
,
Wiggins
 
KL
,
Xing
 
H
,
Yerges-Armstrong
 
LM
,
Yu
 
B
,
Zannad
 
F
,
Zhao
 
JH
,
Hemingway
 
H
,
Samani
 
NJ
,
McMurray
 
JJV
,
Yang
 
J
,
Visscher
 
PM
,
Newton-Cheh
 
C
,
Malarstig
 
A
,
Holm
 
H
,
Lubitz
 
SA
,
Sattar
 
N
,
Holmes
 
MV
,
Cappola
 
TP
,
Asselbergs
 
FW
,
Hingorani
 
AD
,
Kuchenbaecker
 
K
,
Ellinor
 
PT
,
Lang
 
CC
,
Stefansson
 
K
,
Smith
 
JG
,
Vasan
 
RS
,
Swerdlow
 
DI
,
Lumbers
 
RT
.
Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure
.
Nat Commun
 
2020
;
11
:
163
.

33.

Aragam
 
KG
,
Jiang
 
T
,
Goel
 
A
,
Kanoni
 
S
,
Wolford
 
BN
,
Atri
 
DS
,
Weeks
 
EM
,
Wang
 
M
,
Hindy
 
G
,
Zhou
 
W
,
Grace
 
C
,
Roselli
 
C
,
Marston
 
NA
,
Kamanu
 
FK
,
Surakka
 
I
,
Venegas
 
LM
,
Sherliker
 
P
,
Koyama
 
S
,
Ishigaki
 
K
,
Åsvold
 
BO
,
Brown
 
MR
,
Brumpton
 
B
,
de Vries
 
PS
,
Giannakopoulou
 
O
,
Giardoglou
 
P
,
Gudbjartsson
 
DF
,
Güldener
 
U
,
Haider
 
SMI
,
Helgadottir
 
A
,
Ibrahim
 
M
,
Kastrati
 
A
,
Kessler
 
T
,
Kyriakou
 
T
,
Konopka
 
T
,
Li
 
L
,
Ma
 
L
,
Meitinger
 
T
,
Mucha
 
S
,
Munz
 
M
,
Murgia
 
F
,
Nielsen
 
JB
,
Nöthen
 
MM
,
Pang
 
S
,
Reinberger
 
T
,
Schnitzler
 
G
,
Smedley
 
D
,
Thorleifsson
 
G
,
von Scheidt
 
M
,
Ulirsch
 
JC
,
Danesh
 
J
,
Arnar
 
DO
,
Burtt
 
NP
,
Costanzo
 
MC
,
Flannick
 
J
,
Ito
 
K
,
Jang
 
D-K
,
Kamatani
 
Y
,
Khera
 
AV
,
Komuro
 
I
,
Kullo
 
IJ
,
Lotta
 
LA
,
Nelson
 
CP
,
Roberts
 
R
,
Thorgeirsson
 
G
,
Thorsteinsdottir
 
U
,
Webb
 
TR
,
Baras
 
A
,
Björkegren
 
JLM
,
Boerwinkle
 
E
,
Dedoussis
 
G
,
Holm
 
H
,
Hveem
 
K
,
Melander
 
O
,
Morrison
 
AC
,
Orho-Melander
 
M
,
Rallidis
 
LS
,
Ruusalepp
 
A
,
Sabatine
 
MS
,
Stefansson
 
K
,
Zalloua
 
P
,
Ellinor
 
PT
,
Farrall
 
M
,
Danesh
 
J
,
Ruff
 
CT
,
Finucane
 
HK
,
Hopewell
 
JC
,
Clarke
 
R
,
Gupta
 
RM
,
Erdmann
 
J
,
Samani
 
NJ
,
Schunkert
 
H
,
Watkins
 
H
,
Willer
 
CJ
,
Deloukas
 
P
,
Kathiresan
 
S
,
Butterworth
 
AS
,
de Vries
 
PS
,
von Scheidt
 
M
.
Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants
.
Nat Genet
 
2022
;
54
:
1803
1815
.

34.

Mishra
 
A
,
Malik
 
R
,
Hachiya
 
T
,
Jürgenson
 
T
,
Namba
 
S
,
Posner
 
DC
,
Kamanu
 
FK
,
Koido
 
M
,
Le Grand
 
Q
,
Shi
 
M
,
He
 
Y
,
Georgakis
 
MK
,
Caro
 
I
,
Krebs
 
K
,
Liaw
 
Y-C
,
Vaura
 
FC
,
Lin
 
K
,
Winsvold
 
BS
,
Srinivasasainagendra
 
V
,
Parodi
 
L
,
Bae
 
H-J
,
Chauhan
 
G
,
Chong
 
MR
,
Tomppo
 
L
,
Akinyemi
 
R
,
Roshchupkin
 
GV
,
Habib
 
N
,
Jee
 
YH
,
Thomassen
 
JQ
,
Abedi
 
V
,
Cárcel-Márquez
 
J
,
Nygaard
 
M
,
Leonard
 
HL
,
Yang
 
C
,
Yonova-Doing
 
E
,
Knol
 
MJ
,
Lewis
 
AJ
,
Judy
 
RL
,
Ago
 
T
,
Amouyel
 
P
,
Armstrong
 
ND
,
Bakker
 
MK
,
Bartz
 
TM
,
Bennett
 
DA
,
Bis
 
JC
,
Bordes
 
C
,
Børte
 
S
,
Cain
 
A
,
Ridker
 
PM
,
Cho
 
K
,
Chen
 
Z
,
Cruchaga
 
C
,
Cole
 
JW
,
de Jager
 
PL
,
de Cid
 
R
,
Endres
 
M
,
Ferreira
 
LE
,
Geerlings
 
MI
,
Gasca
 
NC
,
Gudnason
 
V
,
Hata
 
J
,
He
 
J
,
Heath
 
AK
,
Ho
 
Y-L
,
Havulinna
 
AS
,
Hopewell
 
JC
,
Hyacinth
 
HI
,
Inouye
 
M
,
Jacob
 
MA
,
Jeon
 
CE
,
Jern
 
C
,
Kamouchi
 
M
,
Keene
 
KL
,
Kitazono
 
T
,
Kittner
 
SJ
,
Konuma
 
T
,
Kumar
 
A
,
Lacaze
 
P
,
Launer
 
LJ
,
Lee
 
K-J
,
Lepik
 
K
,
Li
 
J
,
Li
 
L
,
Manichaikul
 
A
,
Markus
 
HS
,
Marston
 
NA
,
Meitinger
 
T
,
Mitchell
 
BD
,
Montellano
 
FA
,
Morisaki
 
T
,
Mosley
 
TH
,
Nalls
 
MA
,
Nordestgaard
 
BG
,
O'Donnell
 
MJ
,
Okada
 
Y
,
Onland-Moret
 
NC
,
Ovbiagele
 
B
,
Peters
 
A
,
Psaty
 
BM
,
Rich
 
SS
,
Rosand
 
J
,
Sabatine
 
MS
,
Sacco
 
RL
,
Saleheen
 
D
,
Sandset
 
EC
,
Salomaa
 
V
,
Sargurupremraj
 
M
,
Sasaki
 
M
,
Satizabal
 
CL
,
Schmidt
 
CO
,
Shimizu
 
A
,
Smith
 
NL
,
Sloane
 
KL
,
Sutoh
 
Y
,
Sun
 
YV
,
Tanno
 
K
,
Tiedt
 
S
,
Tatlisumak
 
T
,
Torres-Aguila
 
NP
,
Tiwari
 
HK
,
Trégouët
 
D-A
,
Trompet
 
S
,
Tuladhar
 
AM
,
Tybjærg-Hansen
 
A
,
van Vugt
 
M
,
Vibo
 
R
,
Verma
 
SS
,
Wiggins
 
KL
,
Wennberg
 
P
,
Woo
 
D
,
Wilson
 
PWF
,
Xu
 
H
,
Yang
 
Q
,
Yoon
 
K
,
Bis
 
JC
,
Lee
 
J-M
,
Cheng
 
Y-C
,
Meschia
 
JF
,
Chen
 
WM
,
Sale
 
MM
,
Zonderman
 
AB
,
Evans
 
MK
,
Wilson
 
JG
,
Correa
 
A
,
Traylor
 
M
,
Lewis
 
CM
,
Carty
 
CL
,
Reiner
 
A
,
Haessler
 
J
,
Langefeld
 
CD
,
Gottesman
 
RF
,
Yaffe
 
K
,
Liu
 
YM
,
Kooperberg
 
C
,
Lange
 
LA
,
Furie
 
KL
,
Arnett
 
DK
,
Benavente
 
OR
,
Grewal
 
RP
,
Peddareddygari
 
LR
,
Kooperberg
 
C
,
Hveem
 
K
,
Lindstrom
 
S
,
Wang
 
L
,
Smith
 
EN
,
Gordon
 
W
,
van Hylckama Vlieg
 
A
,
de Andrade
 
M
,
Brody
 
JA
,
Pattee
 
JW
,
Haessler
 
J
,
Brumpton
 
BM
,
Suchon
 
P
,
Chen
 
M-H
,
Frazer
 
KA
,
Turman
 
C
,
Germain
 
M
,
MacDonald
 
J
,
Braekkan
 
SK
,
Armasu
 
SM
,
Pankratz
 
N
,
Jackson
 
RD
,
Nielsen
 
JB
,
Giulianini
 
F
,
Puurunen
 
MK
,
Ibrahim
 
M
,
Heckbert
 
SR
,
Bammler
 
TK
,
McCauley
 
BM
,
Taylor
 
KD
,
Pankow
 
JS
,
Reiner
 
AP
,
Gabrielsen
 
ME
,
Deleuze
 
J-F
,
O'Donnell
 
CJ
,
Kim
 
J
,
McKnight
 
B
,
Kraft
 
P
,
Hansen
 
J-B
,
Rosendaal
 
FR
,
Heit
 
JA
,
Tang
 
W
,
Morange
 
P-E
,
Johnson
 
AD
,
Kabrhel
 
C
,
van Dijk
 
EJ
,
Koudstaal
 
PJ
,
Luijckx
 
G-J
,
Nederkoorn
 
PJ
,
van Oostenbrugge
 
RJ
,
Visser
 
MC
,
Wermer
 
MJH
,
Kappelle
 
LJ
,
Esko
 
T
,
Metspalu
 
A
,
Mägi
 
R
,
Nelis
 
M
,
Irvin
 
MR
,
de Leeuw
 
F-E
,
Levi
 
CR
,
Maguire
 
J
,
Jiménez-Conde
 
J
,
Sharma
 
P
,
Sudlow
 
CLM
,
Rannikmäe
 
K
,
Schmidt
 
R
,
Slowik
 
A
,
Pera
 
J
,
Thijs
 
VNS
,
Lindgren
 
AG
,
Ilinca
 
A
,
Melander
 
O
,
Engström
 
G
,
Rexrode
 
KM
,
Rothwell
 
PM
,
Stanne
 
TM
,
Johnson
 
JA
,
Danesh
 
J
,
Butterworth
 
AS
,
Heitsch
 
L
,
Boncoraglio
 
GB
,
Kubo
 
M
,
Pezzini
 
A
,
Rolfs
 
A
,
Giese
 
A-K
,
Weir
 
D
,
Jackson
 
RD
,
Ross
 
OA
,
Lemmons
 
R
,
Soderholm
 
M
,
Cushman
 
M
,
Jood
 
K
,
McDonough
 
CW
,
Bell
 
S
,
Linkohr
 
B
,
Lee
 
T-H
,
Putaala
 
J
,
Anderson
 
CD
,
Lopez
 
OL
,
Jian
 
X
,
Schminke
 
U
,
Cullell
 
N
,
Delgado
 
P
,
Ibañez
 
L
,
Krupinski
 
J
,
Lioutas
 
V
,
Matsuda
 
K
,
Montaner
 
J
,
Muiño
 
E
,
Roquer
 
J
,
Sarnowski
 
C
,
Sattar
 
N
,
Sibolt
 
G
,
Teumer
 
A
,
Rutten-Jacobs
 
L
,
Kanai
 
M
,
Giese
 
A-K
,
Gretarsdottir
 
S
,
Rost
 
NS
,
Yusuf
 
S
,
Almgren
 
P
,
Ay
 
H
,
Bevan
 
S
,
Brown
 
RD
,
Carrera
 
C
,
Buring
 
JE
,
Chen
 
W-M
,
Cotlarciuc
 
I
,
de Bakker
 
PIW
,
DeStefano
 
AL
,
den Hoed
 
M
,
Duan
 
Q
,
Engelter
 
ST
,
Falcone
 
GJ
,
Gottesman
 
RF
,
Gustafsson
 
S
,
Hassan
 
A
,
Holliday
 
EG
,
Howard
 
G
,
Hsu
 
F-C
,
Ingelsson
 
E
,
Harris
 
TB
,
Kissela
 
BM
,
Kleindorfer
 
DO
,
Langenberg
 
C
,
Lemmens
 
R
,
Leys
 
D
,
Lin
 
W-Y
,
Lorentzen
 
E
,
Magnusson
 
PK
,
McArdle
 
PF
,
Pulit
 
SL
,
Rice
 
K
,
Sakaue
 
S
,
Sapkota
 
BR
,
Tanislav
 
C
,
Thorleifsson
 
G
,
Thorsteinsdottir
 
U
,
Tzourio
 
C
,
van Duijn
 
CM
,
Walters
 
M
,
Wareham
 
NJ
,
Amin
 
N
,
Aparicio
 
HJ
,
Attia
 
J
,
Beiser
 
AS
,
Berr
 
C
,
Bustamante
 
M
,
Caso
 
V
,
Choi
 
SH
,
Chowhan
 
A
,
Dartigues
 
J-F
,
Delavaran
 
H
,
Dörr
 
M
,
Ford
 
I
,
Gurpreet
 
WS
,
Hamsten
 
A
,
Hozawa
 
A
,
Ingelsson
 
M
,
Iwasaki
 
M
,
Kaffashian
 
S
,
Kalra
 
L
,
Kjartansson
 
O
,
Kloss
 
M
,
Labovitz
 
DL
,
Laurie
 
CC
,
Li
 
L
,
Lind
 
L
,
Lindgren
 
CM
,
Makoto
 
H
,
Minegishi
 
N
,
Morris
 
AP
,
Müller-Nurasyid
 
M
,
Norrving
 
B
,
Ogishima
 
S
,
Parati
 
EA
,
Pedersen
 
NL
,
Perola
 
M
,
Jousilahti
 
P
,
Pileggi
 
S
,
Rabionet
 
R
,
Riba-Llena
 
I
,
Ribasés
 
M
,
Romero
 
JR
,
Rudd
 
AG
,
Sarin
 
A-P
,
Sarju
 
R
,
Satoh
 
M
,
Sawada
 
N
,
Sigurdsson
 
Ás
,
Smith
 
A
,
Stine
 
OC
,
Stott
 
DJ
,
Strauch
 
K
,
Takai
 
T
,
Tanaka
 
H
,
Touze
 
E
,
Tsugane
 
S
,
Uitterlinden
 
AG
,
Valdimarsson
 
EM
,
van der Lee
 
SJ
,
Wakai
 
K
,
Williams
 
SR
,
Wolfe
 
CDA
,
Wong
 
Q
,
Yamaji
 
T
,
Sanghera
 
DK
,
Stefansson
 
K
,
Taylor
 
KD
,
Martinez-Majander
 
N
,
Sobue
 
K
,
Soriano-Tárraga
 
C
,
Völzke
 
H
,
Akpa
 
O
,
Sarfo
 
FS
,
Akpalu
 
A
,
Obiako
 
R
,
Wahab
 
K
,
Osaigbovo
 
G
,
Owolabi
 
L
,
Komolafe
 
M
,
Jenkins
 
C
,
Arulogun
 
O
,
Ogbole
 
G
,
Adeoye
 
AM
,
Akinyemi
 
J
,
Agunloye
 
A
,
Fakunle
 
AG
,
Uvere
 
E
,
Olalere
 
A
,
Adebajo
 
OJ
,
Chen
 
J
,
Clarke
 
R
,
Collins
 
R
,
Guo
 
Y
,
Wang
 
C
,
Lv
 
J
,
Peto
 
R
,
Chen
 
Y
,
Fairhurst-Hunter
 
Z
,
Hill
 
M
,
Pozarickij
 
A
,
Schmidt
 
D
,
Stevens
 
B
,
Turnbull
 
I
,
Yu
 
C
,
Le Grand
 
Q
,
Ferreira
 
LE
,
Nagai
 
A
,
Murakami
 
Y
,
Geerlings
 
MI
,
Gasca
 
NC
,
Gudnason
 
V
,
van Vugt
 
M
,
Gottesman
 
RF
,
Shiroma
 
EJ
,
Sigurdsson
 
S
,
Ghanbari
 
M
,
Boerwinkle
 
E
,
Beiser
 
AS
,
Fongang
 
B
,
Wang
 
R
,
Ikram
 
MK
,
Völker
 
U
,
de Jager
 
PL
,
de Cid
 
R
,
Nordestgaard
 
BG
,
Sargurupremraj
 
M
,
Verma
 
SS
,
de Laat
 
KF
,
van Norden
 
AGW
,
de Kort
 
PL
,
Vermeer
 
SE
,
Brouwers
 
PJAM
,
Gons
 
RAR
,
Nederkoorn
 
PJ
,
den Heijer
 
T
,
van Dijk
 
GW
,
van Rooij
 
FGW
,
Aamodt
 
AH
,
Skogholt
 
AH
,
Brumpton
 
BM
,
Willer
 
CJ
,
Heuch
 
I
,
Hagen
 
K
,
Fritsche
 
LG
,
Pedersen
 
LM
,
Gabrielsen
 
ME
,
Ellekjær
 
H
,
Zhou
 
W
,
Martinsen
 
AE
,
Kristoffersen
 
ES
,
Nielsen
 
JB
,
Hveem
 
K
,
Thomas
 
LF
,
Kleinschnitz
 
C
,
Frantz
 
S
,
Ungethüm
 
K
,
Gallego-Fabrega
 
C
,
Lledós
 
M
,
Llucià-Carol
 
L
,
Sobrino
 
T
,
Campos
 
F
,
Castillo
 
J
,
Freijó
 
M
,
Arenillas
 
JF
,
Obach
 
V
,
Álvarez-Sabín
 
J
,
Molina
 
CA
,
Ribó
 
M
,
Muñoz-Narbona
 
L
,
Lopez-Cancio
 
E
,
Millán
 
M
,
Diaz-Navarro
 
R
,
Vives-Bauza
 
C
,
Serrano-Heras
 
G
,
Segura
 
T
,
Delgado
 
P
,
Dhar
 
R
,
Delgado-Mederos
 
R
,
Prats-Sánchez
 
L
,
Camps-Renom
 
P
,
Blay
 
N
,
Sumoy
 
L
,
Martí-Fàbregas
 
J
,
Schnohr
 
P
,
Jensen
 
GB
,
Benn
 
M
,
Afzal
 
S
,
Kamstrup
 
PR
,
van Setten
 
J
,
van der Laan
 
SW
,
Vonk
 
JMJ
,
Kim
 
B-J
,
Curtze
 
S
,
Tiainen
 
M
,
Kinnunen
 
J
,
Menon
 
V
,
Sung
 
YJ
,
Yang
 
C
,
Saillour-Glenisson
 
F
,
Gravel
 
S
,
Onland-Moret
 
NC
,
Heath
 
AK
,
Millwood
 
IY
,
Gieger
 
C
,
Ninomiya
 
T
,
Grabe
 
HJ
,
Jukema
 
JW
,
Rissanen
 
IL
,
Strbian
 
D
,
Kim
 
YJ
,
Chen
 
P-H
,
Mayerhofer
 
E
,
Howson
 
JMM
,
Irvin
 
MR
,
Adams
 
H
,
Wassertheil-Smoller
 
S
,
Christensen
 
K
,
Ikram
 
MA
,
Rundek
 
T
,
Worrall
 
BB
,
Lathrop
 
GM
,
Riaz
 
M
,
Simonsick
 
EM
,
Kõrv
 
J
,
França
 
PHC
,
Zand
 
R
,
Prasad
 
K
,
Frikke-Schmidt
 
R
,
de Leeuw
 
F-E
,
Liman
 
T
,
Haeusler
 
KG
,
Ruigrok
 
YM
,
Heuschmann
 
PU
,
Longstreth
 
WT
,
Jung
 
KJ
,
Bastarache
 
L
,
Paré
 
G
,
Damrauer
 
SM
,
Chasman
 
DI
,
Rotter
 
JI
,
Anderson
 
CD
,
Zwart
 
J-A
,
Niiranen
 
TJ
,
Fornage
 
M
,
Liaw
 
Y-P
,
Seshadri
 
S
,
Fernández-Cadenas
 
I
,
Walters
 
RG
,
Ruff
 
CT
,
Owolabi
 
MO
,
Huffman
 
JE
,
Milani
 
L
,
Kamatani
 
Y
,
Dichgans
 
M
,
Debette
 
S
.
Stroke genetics informs drug discovery and risk prediction across ancestries
.
Nature
 
2022
;
611
:
115
123
.

35.

Mahajan
 
A
,
Spracklen
 
CN
,
Zhang
 
W
,
Ng
 
MCY
,
Petty
 
LE
,
Kitajima
 
H
,
Yu
 
GZ
,
Rüeger
 
S
,
Speidel
 
L
,
Kim
 
YJ
,
Horikoshi
 
M
,
Mercader
 
JM
,
Taliun
 
D
,
Moon
 
S
,
Kwak
 
S-H
,
Robertson
 
NR
,
Rayner
 
NW
,
Loh
 
M
,
Kim
 
B-J
,
Chiou
 
J
,
Miguel-Escalada
 
I
,
della Briotta Parolo
 
P
,
Lin
 
K
,
Bragg
 
F
,
Preuss
 
MH
,
Takeuchi
 
F
,
Nano
 
J
,
Guo
 
X
,
Lamri
 
A
,
Nakatochi
 
M
,
Scott
 
RA
,
Lee
 
J-J
,
Huerta-Chagoya
 
A
,
Graff
 
M
,
Chai
 
J-F
,
Parra
 
EJ
,
Yao
 
J
,
Bielak
 
LF
,
Tabara
 
Y
,
Hai
 
Y
,
Steinthorsdottir
 
V
,
Cook
 
JP
,
Kals
 
M
,
Grarup
 
N
,
Schmidt
 
EM
,
Pan
 
I
,
Sofer
 
T
,
Wuttke
 
M
,
Sarnowski
 
C
,
Gieger
 
C
,
Nousome
 
D
,
Trompet
 
S
,
Long
 
J
,
Sun
 
M
,
Tong
 
L
,
Chen
 
W-M
,
Ahmad
 
M
,
Noordam
 
R
,
Lim
 
VJY
,
Tam
 
CHT
,
Joo
 
YY
,
Chen
 
C-H
,
Raffield
 
LM
,
Lecoeur
 
C
,
Prins
 
BP
,
Nicolas
 
A
,
Yanek
 
LR
,
Chen
 
G
,
Jensen
 
RA
,
Tajuddin
 
S
,
Kabagambe
 
EK
,
An
 
P
,
Xiang
 
AH
,
Choi
 
HS
,
Cade
 
BE
,
Tan
 
J
,
Flanagan
 
J
,
Abaitua
 
F
,
Adair
 
LS
,
Adeyemo
 
A
,
Aguilar-Salinas
 
CA
,
Akiyama
 
M
,
Anand
 
SS
,
Bertoni
 
A
,
Bian
 
Z
,
Bork-Jensen
 
J
,
Brandslund
 
I
,
Brody
 
JA
,
Brummett
 
CM
,
Buchanan
 
TA
,
Canouil
 
M
,
Chan
 
JCN
,
Chang
 
L-C
,
Chee
 
M-L
,
Chen
 
J
,
Chen
 
S-H
,
Chen
 
Y-T
,
Chen
 
Z
,
Chuang
 
L-M
,
Cushman
 
M
,
Das
 
SK
,
de Silva
 
HJ
,
Dedoussis
 
G
,
Dimitrov
 
L
,
Doumatey
 
AP
,
Du
 
S
,
Duan
 
Q
,
Eckardt
 
K-U
,
Emery
 
LS
,
Evans
 
DS
,
Evans
 
MK
,
Fischer
 
K
,
Floyd
 
JS
,
Ford
 
I
,
Fornage
 
M
,
Franco
 
OH
,
Frayling
 
TM
,
Freedman
 
BI
,
Fuchsberger
 
C
,
Genter
 
P
,
Gerstein
 
HC
,
Giedraitis
 
V
,
González-Villalpando
 
C
,
González-Villalpando
 
ME
,
Goodarzi
 
MO
,
Gordon-Larsen
 
P
,
Gorkin
 
D
,
Gross
 
M
,
Guo
 
Y
,
Hackinger
 
S
,
Han
 
S
,
Hattersley
 
AT
,
Herder
 
C
,
Howard
 
A-G
,
Hsueh
 
W
,
Huang
 
M
,
Huang
 
W
,
Hung
 
Y-J
,
Hwang
 
MY
,
Hwu
 
C-M
,
Ichihara
 
S
,
Ikram
 
MA
,
Ingelsson
 
M
,
Islam
 
MT
,
Isono
 
M
,
Jang
 
H-M
,
Jasmine
 
F
,
Jiang
 
G
,
Jonas
 
JB
,
Jørgensen
 
ME
,
Jørgensen
 
T
,
Kamatani
 
Y
,
Kandeel
 
FR
,
Kasturiratne
 
A
,
Katsuya
 
T
,
Kaur
 
V
,
Kawaguchi
 
T
,
Keaton
 
JM
,
Kho
 
AN
,
Khor
 
C-C
,
Kibriya
 
MG
,
Kim
 
D-H
,
Kohara
 
K
,
Kriebel
 
J
,
Kronenberg
 
F
,
Kuusisto
 
J
,
Läll
 
K
,
Lange
 
LA
,
Lee
 
M-S
,
Lee
 
NR
,
Leong
 
A
,
Li
 
L
,
Li
 
Y
,
Li-Gao
 
R
,
Ligthart
 
S
,
Lindgren
 
CM
,
Linneberg
 
A
,
Liu
 
C-T
,
Liu
 
J
,
Locke
 
AE
,
Louie
 
T
,
Luan
 
J'A
,
Luk
 
AO
,
Luo
 
X
,
Lv
 
J
,
Lyssenko
 
V
,
Mamakou
 
V
,
Mani
 
KR
,
Meitinger
 
T
,
Metspalu
 
A
,
Morris
 
AD
,
Nadkarni
 
GN
,
Nadler
 
JL
,
Nalls
 
MA
,
Nayak
 
U
,
Nongmaithem
 
SS
,
Ntalla
 
I
,
Okada
 
Y
,
Orozco
 
L
,
Patel
 
SR
,
Pereira
 
MA
,
Peters
 
A
,
Pirie
 
FJ
,
Porneala
 
B
,
Prasad
 
G
,
Preissl
 
S
,
Rasmussen-Torvik
 
LJ
,
Reiner
 
AP
,
Roden
 
M
,
Rohde
 
R
,
Roll
 
K
,
Sabanayagam
 
C
,
Sander
 
M
,
Sandow
 
K
,
Sattar
 
N
,
Schönherr
 
S
,
Schurmann
 
C
,
Shahriar
 
M
,
Shi
 
J
,
Shin
 
DM
,
Shriner
 
D
,
Smith
 
JA
,
So
 
WY
,
Stančáková
 
A
,
Stilp
 
AM
,
Strauch
 
K
,
Suzuki
 
K
,
Takahashi
 
A
,
Taylor
 
KD
,
Thorand
 
B
,
Thorleifsson
 
G
,
Thorsteinsdottir
 
U
,
Tomlinson
 
B
,
Torres
 
JM
,
Tsai
 
F-J
,
Tuomilehto
 
J
,
Tusie-Luna
 
T
,
Udler
 
MS
,
Valladares-Salgado
 
A
,
van Dam
 
RM
,
van Klinken
 
JB
,
Varma
 
R
,
Vujkovic
 
M
,
Wacher-Rodarte
 
N
,
Wheeler
 
E
,
Whitsel
 
EA
,
Wickremasinghe
 
AR
,
van Dijk
 
KW
,
Witte
 
DR
,
Yajnik
 
CS
,
Yamamoto
 
K
,
Yamauchi
 
T
,
Yengo
 
L
,
Yoon
 
K
,
Yu
 
C
,
Yuan
 
J-M
,
Yusuf
 
S
,
Zhang
 
L
,
Zheng
 
W
,
Rüeger
 
S
,
della Briotta Parolo
 
P
,
Joo
 
YY
,
Hayes
 
MG
,
Raffel
 
LJ
,
Igase
 
M
,
Ipp
 
E
,
Redline
 
S
,
Cho
 
YS
,
Lind
 
L
,
Province
 
MA
,
Hanis
 
CL
,
Peyser
 
PA
,
Ingelsson
 
E
,
Zonderman
 
AB
,
Psaty
 
BM
,
Wang
 
Y-X
,
Rotimi
 
CN
,
Becker
 
DM
,
Matsuda
 
F
,
Liu
 
Y
,
Zeggini
 
E
,
Yokota
 
M
,
Rich
 
SS
,
Kooperberg
 
C
,
Pankow
 
JS
,
Engert
 
JC
,
Chen
 
Y-DI
,
Froguel
 
P
,
Wilson
 
JG
,
Sheu
 
WHH
,
Kardia
 
SLR
,
Wu
 
J-Y
,
Hayes
 
MG
,
Ma
 
RCW
,
Wong
 
T-Y
,
Groop
 
L
,
Mook-Kanamori
 
DO
,
Chandak
 
GR
,
Collins
 
FS
,
Bharadwaj
 
D
,
Paré
 
G
,
Sale
 
MM
,
Ahsan
 
H
,
Motala
 
AA
,
Shu
 
X-O
,
Park
 
K-S
,
Jukema
 
JW
,
Cruz
 
M
,
McKean-Cowdin
 
R
,
Grallert
 
H
,
Cheng
 
C-Y
,
Bottinger
 
EP
,
Dehghan
 
A
,
Tai
 
E-S
,
Dupuis
 
J
,
Kato
 
N
,
Laakso
 
M
,
Köttgen
 
A
,
Koh
 
W-P
,
Palmer
 
CNA
,
Liu
 
S
,
Abecasis
 
G
,
Kooner
 
JS
,
Loos
 
RJF
,
North
 
KE
,
Haiman
 
CA
,
Florez
 
JC
,
Saleheen
 
D
,
Hansen
 
T
,
Pedersen
 
O
,
Mägi
 
R
,
Langenberg
 
C
,
Wareham
 
NJ
,
Maeda
 
S
,
Kadowaki
 
T
,
Lee
 
J
,
Millwood
 
IY
,
Walters
 
RG
,
Stefansson
 
K
,
Myers
 
SR
,
Ferrer
 
J
,
Gaulton
 
KJ
,
Meigs
 
JB
,
Mohlke
 
KL
,
Gloyn
 
AL
,
Bowden
 
DW
,
Below
 
JE
,
Chambers
 
JC
,
Sim
 
X
,
Boehnke
 
M
,
Rotter
 
JI
,
McCarthy
 
MI
,
Morris
 
AP
.
Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation
.
Nat Genet
 
2022
;
54
:
560
572
.

36.

Wuttke
 
M
,
Li
 
Y
,
Li
 
M
,
Sieber
 
KB
,
Feitosa
 
MF
,
Gorski
 
M
,
Tin
 
A
,
Wang
 
L
,
Chu
 
AY
,
Hoppmann
 
A
,
Kirsten
 
H
,
Giri
 
A
,
Chai
 
J-F
,
Sveinbjornsson
 
G
,
Tayo
 
BO
,
Nutile
 
T
,
Fuchsberger
 
C
,
Marten
 
J
,
Cocca
 
M
,
Ghasemi
 
S
,
Xu
 
Y
,
Horn
 
K
,
Noce
 
D
,
van der Most
 
PJ
,
Sedaghat
 
S
,
Yu
 
Z
,
Akiyama
 
M
,
Afaq
 
S
,
Ahluwalia
 
TS
,
Almgren
 
P
,
Amin
 
N
,
Ärnlöv
 
J
,
Bakker
 
SJL
,
Bansal
 
N
,
Baptista
 
D
,
Bergmann
 
S
,
Biggs
 
ML
,
Biino
 
G
,
Boehnke
 
M
,
Boerwinkle
 
E
,
Boissel
 
M
,
Bottinger
 
EP
,
Boutin
 
TS
,
Brenner
 
H
,
Brumat
 
M
,
Burkhardt
 
R
,
Butterworth
 
AS
,
Campana
 
E
,
Campbell
 
A
,
Campbell
 
H
,
Canouil
 
M
,
Carroll
 
RJ
,
Catamo
 
E
,
Chambers
 
JC
,
Chee
 
M-L
,
Chee
 
M-L
,
Chen
 
X
,
Cheng
 
C-Y
,
Cheng
 
Y
,
Christensen
 
K
,
Cifkova
 
R
,
Ciullo
 
M
,
Concas
 
MP
,
Cook
 
JP
,
Coresh
 
J
,
Corre
 
T
,
Sala
 
CF
,
Cusi
 
D
,
Danesh
 
J
,
Daw
 
EW
,
de Borst
 
MH
,
De Grandi
 
A
,
de Mutsert
 
R
,
de Vries
 
APJ
,
Degenhardt
 
F
,
Delgado
 
G
,
Demirkan
 
A
,
Di Angelantonio
 
E
,
Dittrich
 
K
,
Divers
 
J
,
Dorajoo
 
R
,
Eckardt
 
K-U
,
Ehret
 
G
,
Elliott
 
P
,
Endlich
 
K
,
Evans
 
MK
,
Felix
 
JF
,
Foo
 
VHX
,
Franco
 
OH
,
Franke
 
A
,
Freedman
 
BI
,
Freitag-Wolf
 
S
,
Friedlander
 
Y
,
Froguel
 
P
,
Gansevoort
 
RT
,
Gao
 
H
,
Gasparini
 
P
,
Gaziano
 
JM
,
Giedraitis
 
V
,
Gieger
 
C
,
Girotto
 
G
,
Giulianini
 
F
,
Gögele
 
M
,
Gordon
 
SD
,
Gudbjartsson
 
DF
,
Gudnason
 
V
,
Haller
 
T
,
Hamet
 
P
,
Harris
 
TB
,
Hartman
 
CA
,
Hayward
 
C
,
Hellwege
 
JN
,
Heng
 
C-K
,
Hicks
 
AA
,
Hofer
 
E
,
Huang
 
W
,
Hutri-Kähönen
 
N
,
Hwang
 
S-J
,
Ikram
 
MA
,
Indridason
 
OS
,
Ingelsson
 
E
,
Ising
 
M
,
Jaddoe
 
VWV
,
Jakobsdottir
 
J
,
Jonas
 
JB
,
Joshi
 
PK
,
Josyula
 
NS
,
Jung
 
B
,
Kähönen
 
M
,
Kamatani
 
Y
,
Kammerer
 
CM
,
Kanai
 
M
,
Kastarinen
 
M
,
Kerr
 
SM
,
Khor
 
C-C
,
Kiess
 
W
,
Kleber
 
ME
,
Koenig
 
W
,
Kooner
 
JS
,
Körner
 
A
,
Kovacs
 
P
,
Kraja
 
AT
,
Krajcoviechova
 
A
,
Kramer
 
H
,
Krämer
 
BK
,
Kronenberg
 
F
,
Kubo
 
M
,
Kühnel
 
B
,
Kuokkanen
 
M
,
Kuusisto
 
J
,
La Bianca
 
M
,
Laakso
 
M
,
Lange
 
LA
,
Langefeld
 
CD
,
Lee
 
JJ-M
,
Lehne
 
B
,
Lehtimäki
 
T
,
Lieb
 
W
,
Lim
 
S-C
,
Lind
 
L
,
Lindgren
 
CM
,
Liu
 
J
,
Liu
 
J
,
Loeffler
 
M
,
Loos
 
RJF
,
Lucae
 
S
,
Lukas
 
MA
,
Lyytikäinen
 
L-P
,
Mägi
 
R
,
Magnusson
 
PKE
,
Mahajan
 
A
,
Martin
 
NG
,
Martins
 
J
,
März
 
W
,
Mascalzoni
 
D
,
Matsuda
 
K
,
Meisinger
 
C
,
Meitinger
 
T
,
Melander
 
O
,
Metspalu
 
A
,
Mikaelsdottir
 
EK
,
Milaneschi
 
Y
,
Miliku
 
K
,
Mishra
 
PP
,
Mohlke
 
KL
,
Mononen
 
N
,
Montgomery
 
GW
,
Mook-Kanamori
 
DO
,
Mychaleckyj
 
JC
,
Nadkarni
 
GN
,
Nalls
 
MA
,
Nauck
 
M
,
Nikus
 
K
,
Ning
 
B
,
Nolte
 
IM
,
Noordam
 
R
,
O'Connell
 
J
,
O'Donoghue
 
ML
,
Olafsson
 
I
,
Oldehinkel
 
AJ
,
Orho-Melander
 
M
,
Ouwehand
 
WH
,
Padmanabhan
 
S
,
Palmer
 
ND
,
Palsson
 
R
,
Penninx
 
BWJH
,
Perls
 
T
,
Perola
 
M
,
Pirastu
 
M
,
Pirastu
 
N
,
Pistis
 
G
,
Podgornaia
 
AI
,
Polasek
 
O
,
Ponte
 
B
,
Porteous
 
DJ
,
Poulain
 
T
,
Pramstaller
 
PP
,
Preuss
 
MH
,
Prins
 
BP
,
Province
 
MA
,
Rabelink
 
TJ
,
Raffield
 
LM
,
Raitakari
 
OT
,
Reilly
 
DF
,
Rettig
 
R
,
Rheinberger
 
M
,
Rice
 
KM
,
Ridker
 
PM
,
Rivadeneira
 
F
,
Rizzi
 
F
,
Roberts
 
DJ
,
Robino
 
A
,
Rossing
 
P
,
Rudan
 
I
,
Rueedi
 
R
,
Ruggiero
 
D
,
Ryan
 
KA
,
Saba
 
Y
,
Sabanayagam
 
C
,
Salomaa
 
V
,
Salvi
 
E
,
Saum
 
K-U
,
Schmidt
 
H
,
Schmidt
 
R
,
Schöttker
 
B
,
Schulz
 
C-A
,
Schupf
 
N
,
Shaffer
 
CM
,
Shi
 
Y
,
Smith
 
AV
,
Smith
 
BH
,
Soranzo
 
N
,
Spracklen
 
CN
,
Strauch
 
K
,
Stringham
 
HM
,
Stumvoll
 
M
,
Svensson
 
PO
,
Szymczak
 
S
,
Tai
 
E-S
,
Tajuddin
 
SM
,
Tan
 
NYQ
,
Taylor
 
KD
,
Teren
 
A
,
Tham
 
Y-C
,
Thiery
 
J
,
Thio
 
CHL
,
Thomsen
 
H
,
Thorleifsson
 
G
,
Toniolo
 
D
,
Tönjes
 
A
,
Tremblay
 
J
,
Tzoulaki
 
I
,
Uitterlinden
 
AG
,
Vaccargiu
 
S
,
van Dam
 
RM
,
van der Harst
 
P
,
van Duijn
 
CM
,
Velez Edward
 
DR
,
Verweij
 
N
,
Vogelezang
 
S
,
Völker
 
U
,
Vollenweider
 
P
,
Waeber
 
G
,
Waldenberger
 
M
,
Wallentin
 
L
,
Wang
 
YX
,
Wang
 
C
,
Waterworth
 
DM
,
Bin Wei
 
W
,
White
 
H
,
Whitfield
 
JB
,
Wild
 
SH
,
Wilson
 
JF
,
Wojczynski
 
MK
,
Wong
 
C
,
Wong
 
T-Y
,
Xu
 
L
,
Yang
 
Q
,
Yasuda
 
M
,
Yerges-Armstrong
 
LM
,
Zhang
 
W
,
Zonderman
 
AB
,
Rotter
 
JI
,
Bochud
 
M
,
Psaty
 
BM
,
Vitart
 
V
,
Wilson
 
JG
,
Dehghan
 
A
,
Parsa
 
A
,
Chasman
 
DI
,
Ho
 
K
,
Morris
 
AP
,
Devuyst
 
O
,
Akilesh
 
S
,
Pendergrass
 
SA
,
Sim
 
X
,
Böger
 
CA
,
Okada
 
Y
,
Edwards
 
TL
,
Snieder
 
H
,
Stefansson
 
K
,
Hung
 
AM
,
Heid
 
IM
,
Scholz
 
M
,
Teumer
 
A
,
Köttgen
 
A
,
Pattaro
 
C
.
A catalog of genetic loci associated with kidney function from analyses of a million individuals
.
Nat Genet
 
2019
;
51
:
957
972
.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Supplementary data