Abstract

Background: The presence of fetal DNA in maternal plasma represents a source of fetal genetic material for noninvasive prenatal diagnosis; however, the coexisting background maternal DNA complicates the analysis of aneuploidy in such fetal DNA. Recently, the SERPINB5 gene on chromosome 18 was shown to exhibit different DNA-methylation patterns in the placenta and maternal blood cells, and the allelic ratio for placenta-derived hypomethylated SERPINB5 in maternal plasma was further shown to be useful for noninvasive detection of fetal trisomy 18.

Methods: To develop a similar method for the noninvasive detection of trisomy 21, we used methylation-sensitive single nucleotide primer extension and/or bisulfite sequencing to systematically search 114 CpG islands (CGIs)—76% of the 149 CGIs on chromosome 21 identified by bioinformatic criteria—for differentially methylated DNA patterns. The methylation index (MI) of a CpG site was estimated as the proportion of molecules methylated at that site.

Results: We identified 22 CGIs which were shown to contain CpG sites that were either completely unmethylated (MI = 0.00) in maternal blood cells and methylated in the placenta (MI range, 0.22–0.65), or completely methylated (MI = 1.00) in maternal blood cells and hypomethylated in the placenta (MI range, 0.00–0.75). We detected, for the first time, placental DNA-methylation patterns on chromosome 21 in maternal plasma during pregnancy and observed their postpartum clearance.

Conclusion: Twenty-two (19%) of the 114 studied CGIs on chromosome 21 showed epigenetic differences between samples of placenta and maternal blood cells; these CGIs may provide a rich source of markers for noninvasive prenatal diagnosis.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://dbpia.nl.go.kr/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
You do not currently have access to this article.