-
Views
-
Cite
Cite
Christopher V Eddy, Mark A Arnold, Near-Infrared Spectroscopy for Measuring Urea in Hemodialysis Fluids, Clinical Chemistry, Volume 47, Issue 7, 1 July 2001, Pages 1279–1286, https://doi.org/10.1093/clinchem/47.7.1279
- Share Icon Share
Abstract
Background: Near-infrared spectroscopy is proposed as a method for providing real-time urea concentrations during hemodialysis treatments. The feasibility of such noninvasive urea measurements is evaluated in undiluted dialysate fluid.
Methods: Near-infrared spectra were collected from calibration solutions of urea prepared in dialysate fluid. Spectra were collected over three distinct spectral regions, and partial least-squares calibration models were optimized and compared for each. Selectivity for urea was demonstrated with two-component samples composed of urea and glucose in the dialysate matrix. The clinical significance of this approach was assessed by measuring urea in real hemodialysate samples.
Results: Urea absorptions within the combination and short-wavelength, near-infrared spectral regions provided sufficient spectral information for sound calibration models in the dialysate matrix. The combination spectral region had SEs of calibration (SEC) and prediction (SEP) of 0.38 mmol/L and 0.26 mmol/L, respectively, over the 4720–4600 cm−1 spectral range with 5 partial least-square factors. A second calibration model was established over the combination region from a series of solutions prepared with independently variable concentrations of urea and glucose. The best calibration model for urea in the presence of variable glucose concentrations had a SEC of 0.6 mmol/L and a SEP of 0.4 mmol/L for a 5-factor model over the 4600–4350 cm−1 spectral range. There was no significant decrease in SEP when the 4720–4600 cm−1 calibration model was used to measure urea in real samples collected during actual hemodialysis.
Conclusions: Urea can be determined with sufficient sensitivity and selectivity for clinical measurements within the matrix of the hemodialysis fluid.