Abstract

Coronary artery disease (CAD) poses a substantial threat to global health, leading to significant morbidity and mortality worldwide. It has a significant genetic component that has been studied through genome-wide association studies (GWAS) over the past 17 years. These studies have made progress with larger sample sizes, diverse ancestral backgrounds, and the discovery of multiple genomic regions related to CAD risk. In this review, we provide a comprehensive overview of CAD GWAS, including information about the genetic makeup of the disease and the importance of ethnic diversity in these studies. We also discuss challenges of identifying causal genes and variants within GWAS loci with a focus on non-coding regions. Additionally, we highlight tissues and cell types relevant to CAD, and discuss clinical implications of GWAS findings including polygenic risk scores, sex-specific differences in CAD genetics, ethnical aspects of personalized interventions, and GWAS guided drug development.

1. From inception to present: tracing 17 years of GWAS progress

Coronary artery disease (CAD), caused by atherosclerosis, is ubiquitous in our society, and its end-stage complications [e.g. myocardial infarction (MI) and stroke] are the primary cause of morbidity and mortality worldwide.1 The heritability of CAD is estimated to be 40–70%, which suggests that there is a considerable genetic contribution to its pathology.2

The first genome-wide association study (GWAS) for CAD was performed in 2007, identifying the 9p21 risk locus to be strongly associated with CAD, which has been replicated in many other GWAS for CAD.3–5 Within the last 17 years, the sample size has increased to >1 million, the price of the genotyping array has decreased, sequencing power and statistical methodologies (such as imputation and haplotype tagging) have improved, and national and international consortia have been established (Figure 1). These developments have contributed dramatically to expanding the genome-wide significant CAD loci to 393, complemented with ever more accurate prioritization of candidate causal genes and single nucleotide polymorphisms (SNPs). Table 1 summarizes the CAD genome-wide significant loci identified by recent GWAS for CAD.6–9 In addition to previous CAD GWAS reviews,10–17 we explore challenges in deciphering the causality of variants and genes. Moreover, we propose tissues or cell types most relevant to atherosclerosis and provide a comprehensive picture of pathophysiological pathways beyond lipid metabolism. Finally, we discuss the clinical implications of GWAS in terms of risk stratification, sex-specific and ethnic-specific differences in CAD genetics, and drug development.

Important milestones in CAD genetics. The original version of this figure was published in a previous review from 2018 Erdmann et al.10 and subsequently updated by the authors.
Figure 1

Important milestones in CAD genetics. The original version of this figure was published in a previous review from 2018 Erdmann et al.10 and subsequently updated by the authors.

Table 1

Summary of genome-wide significant CAD risk loci

Locus IDGenes (protein)Genes (RNA)Index rsIDsCoordinates (hg38)TraitsEthnicity
1SKI4, MORN13rs2843152Chr1:2314131LEUR
2PRDM167, ACTRT22rs7413494, rs2493298Chr1:3069321-3409348BPEUR
3DHDDS7, RPS6KA13DHDDS-AS12rs12046497Chr1:26521149BH, LMulti
4ARID1A7, KDF12LOC1019287282rs79598313Chr1:26958422ALC, BH, BP, I, LEUR
5FHL37, INPP5B6rs61776719Chr1:37995647BH, BMI, BPEUR
6ZMYND125, FOXO64rs12047439, rs2152314Chr1:41343968-42480791L, BPMulti
7PCSK916, USP244rs34232196, rs11591147, rs151193009, rs472495Chr1:55023869-55055640ALC, BC, L, PSYEUR, JPN
8PLPP310, FGGY8LINC013584, AC093425.12rs11206803, rs56170783, rs71646019, rs12733512Chr1:56411837-59181306BH, BMI, BP, SMEUR, HISP, JPN, Multi
9PSRC18, CELSR26rs12740374, rs655246Chr1:109274968-109289661ALC, BC, BH, BP, I, L, PSYBLK, EUR, HISP
10PHTF13, MAGI32rs1230666Chr1:113630788EUR
11NGF8, TSPAN22rs11806316, rs61797068Chr1:115210861-115359893EUR
12ECM16, MTMR115ADAMTSL4-AS12, AL356356.12rs67807996, rs11585169Chr1:150023307-150599561BH, BMI, BP, I, SMEUR
13TDRKH9, RIIAD13TDRKH-AS13rs11810571Chr1:151789832PSYEUR
14IL6R5, TPM32rs6686750Chr1:154447367IEUR
15NME79, ATP1B15rs61806987Chr1:169345595BHEUR
16KIAA00405, TNN1rs4650716Chr1:175159575EUR
17DENND1B4, CRB12rs12022672Chr1:197618876SMMulti
18DDX597, CAMSAP24DDX59-AS12rs6700559Chr1:200676945EUR
19LMOD17, IPO94IPO9-AS12rs2820315Chr1:201903136BH, BMI, BP, L, PSYEUR
20DSTYK3, NUAK23AC119673.22rs12048743Chr1:205145745LMulti
21HHAT7, SYT142RNU5A-8P2rs60154123Chr1:210295654EUR
22MIA36, AIDA4MIA3-AS12rs17163363Chr1:222655362BPEUR, HISP, JPN
23AGT5, COG21rs699Chr1:230710048BPEUR
24COLEC112RNASEH1-DT3rs56236159Chr2:3588888BC, BP, I, LMulti
25IAH13, ADAM173rs2715879Chr2:9375422EUR
26OSR13, TTC322rs16986953Chr2:19742712EUR
27APOB5, TDRD152rs13306206, rs515135Chr2:21019859-21063185BC, L, PSYEUR, JPN
28ABCG810, ABCG56rs4245791, rs76866386Chr2:43847292-43848344BC, I, L, PSYEUR
29PRKCE7, SRBD11rs582384Chr2:45669298BPEUR
30BCL11A4, REL1MIR4432HG2rs243071Chr2:60391893EUR
31GFPT15, NFU13rs4346430Chr2:69441670Multi
32GGCX7, VAMP86PARTICL2rs10176176Chr2:85534925BMI, LEUR, JPN
33IL1F105, PSD43rs6759676Chr2:113078771BP, IEUR
34SAP1305, WDR331rs114192718Chr2:128028089EUR
35ARHGAP155, KYNU1rs4662330Chr2:143428906BPEUR
36ZEB212, GTDC13LINC014123, AC009951.42rs6740731, rs17408036, rs10928241Chr2:144513025-145073861BP, SMEUR, HISP
37ACVR2A4, MBD52rs35611688Chr2:147620292EUR
38FIGN5, GRB141rs10930115Chr2:164073872BP, PSY, SMEUR, JPN
39TFPI4, CALCRL3rs840616Chr2:187331742BMI, BP, LEUR
40NBEAL17, CARF7rs148812085Chr2:203012510BMI, BP, L, PSY, SMEUR, HISP
41FN17, ATIC2rs1250247Chr2:215434906BH, BMI, BP, LEUR
42TNS15, TMBIM12rs2161967Chr2:217815806BP, LEUR, HISP
43IRS15, NYAP22rs952227Chr2:226197364ALC, BMI, BP, D, L, SMEUR
44PID15, DNER3rs4140748Chr2:229140789LEUR, JPN
45GIGYF27, SNORC4rs283485Chr2:232780981BH, BMIEUR
46COL6A34, RBM441rs11677932Chr2:237315312BPEUR
47FGD55, NR2C21rs34991912Chr3:14884844BH, BPEUR, JPN
48ZNF5897, CDC25A6AC134772.12rs7633770, rs7617773Chr3:46647072-48152025BH, BPEUR
49IP6K23, IHO13AC121247.12rs34759087Chr3:49124851BH, BMI, PSYEUR
50ITIH43, NISCH2rs77347777Chr3:52814191BMI, BPEUR
51ITGB55, UMPS4rs17843797Chr3:124734175BMIEUR
52DNAJC135, NPHP34rs10512861Chr3:132539117I, LEUR
53PCCB7, PPP2R3A5NCK1-DT3rs34330586Chr3:136081567BMI, I, LEUR
54MRAS5, PIK3CB3rs185244Chr3:138374047BMI, BP, LEUR
55ATP1B34, PLS12rs7622417Chr3:141907157BMI, LMulti
56ARHGEF268, DHX367ARHGEF26-AS13rs357494Chr3:154219964BMI, BP, LEUR, HISP
57CCNL14, TIPARP4rs4266144Chr3:157134803BH, BMIEUR
58MECOM2, SEC621rs16853198Chr3:169122391BPMulti
59FNDC3B2, ECT21rs34229028Chr3:172399666EUR
60rs73070813Chr3:187168807EUR
61HGFAC2rs16844401Chr4:3447925BC, BH, LEUR
62GNPDA21rs10938398Chr4:45184122BMI, I, LMulti
63FIP1L12, LNX11rs17083333Chr4:53705899EUR
64REST9, SPINK22rs781663Chr4:56915588BC, BH, I, LEUR, JPN
65SHROOM35, CCDC1582rs12500824Chr4:76495474L, BPEUR
66ANTXR22, PRDM81rs10857147Chr4:80259918L, BPEUR, HISP
67RASGEF1B4, PRKG21rs36002015Chr4:81704567EUR
68UNC5C2, BMPR1B2rs3775058Chr4:95196220EUR
69MAD2L15, PDE5A4rs7678555Chr4:119988346BPEUR
70PCDH182rs7439567Chr4:137543688BPMulti
71ZNF8275, MMAA1rs13124853Chr4:145863622BP, LEUR
72EDNRA14, ARHGAP103AC093908.12rs13120678, rs1878406, rs6841581Chr4:147352245-147480038BC, BPEUR, JPN
73GUCY1A110, MAP92RP11-588K22.22rs7440763, rs3796587Chr4:155512368-155716921ALC, BP, LEUR, HISP, JPN
74PALLD4, DDX60L1rs869396Chr4:168766849BPEUR
75IRX13rs10041378Chr5:4094052JPN
76SEMA5A7, TAS2R11SNHG185rs17263917Chr5:9552226BCEUR
77BASP12rs1032763Chr5:17118821Multi
78ITGA15, PELO1rs4074793Chr5:52897294L, IEUR, Multi
79ARL152, HSPB31AC027329.12rs7719168Chr5:53996560BP, LEUR
80MAP3K14, IL6ST2rs62362364, rs3936510Chr5:56145744-56565039BMI, BP, L, SMEUR
81ANKDD1B7, HMGCR6rs12916Chr5:75360714BC, BMI, L, PSYEUR
82LNPEP7, ERAP27AC009126.12rs27660Chr5:97012071BP, I, L, PSYMulti
83FER11, FBXL174LINC010233rs288173, rs112949822Chr5:108016593-108749489BH, BMI, BP, IEUR, Multi
84NREP1, WDR361rs256277Chr5:112071113Multi
85DMXL12, TNFAIP81rs13169691Chr5:119112584EUR
86SRFBP15, LOX3AC008568.12rs4345341Chr5:121943056BPEUR
87PRDM63, SNX241rs73796819Chr5:123084735Multi
88FBN28, SLC27A62rs6883598Chr5:128590497BPEUR
89IRF14, RAD504rs10477741, rs2706399Chr5:132459618-132532010LEUR
90FGF16, SPRY42rs249760, rs3776307Chr5:142536127-143114600LEUR
91SGCD4, MED72rs39929Chr5:156696640L, BPMulti
92ADAM195, FNDC91rs11465228Chr5:157575687Multi
93FOXC15, GMDS3rs72836800Chr6:1617092BHEUR
94BLOC1S51, TXNDC51rs6597292Chr6:7975026Multi
95PHACTR16, GFOD12rs9349379Chr6:12903725ALC, BC, BP, CEUR, HISP, JPN
96HDGFL14, PRL1rs6909752Chr6:22612400AFEUR
97HLA-A4, HLA-G3HLA-F-AS15, HLA-H3rs29266Chr6:29607502LEUR
98MICA4, PPP1R104rs139141104, rs9266631Chr6:31021244-31379121LEUR, JPN
99CLIC13, DDAH23SNHG322, LOC1005075472rs3130683Chr6:31920590BH, BMI, BP, L, PSYEUR
100LEMD23, UQCC23rs62397561Chr6:33816328Multi
101BLTP3A9, SNRPC8ILRUN-AS12rs9469899, rs17609940Chr6:34825347-35067023BH, BMI, L, PSYEUR
102CDKN1A5, ETV72DINOL2rs1321309Chr6:36670859BP, I, LEUR
103KCNK510, SAYSD11rs733701, rs10947789Chr6:39204086-39207146BPEUR
104PEX63, PTK71rs1034246Chr6:43100632EUR
105VEGFA4, MRPS18A1rs6905288, rs149372871Chr6:43791136-44080314ALC, BMI, BP, L, PSYEUR, HISP, JPN
106RAB2310, PRIM26LOC1005061884, RP11-203B9.42rs11752218, rs9367716Chr6:57280764-57295774EUR
107CD1096CD109-AS12rs79717953, rs56171536Chr6:73695048-73706145JPN, Multi
108TENT5A4, IBTK1LINC0254`22rs9361867Chr6:81886242EUR
109UFL16, FHL55rs2983896Chr6:96581995BPEUR
110CENPW8, TRMT112rs35510806Chr6:126357186BH, I, L, PSYEUR
111TCF2113, SLC2A127TARID3rs6919211, rs2327426, rs2492304Chr6:133678730-134057013BH, BPEUR, HISP, JPN
112PLEKHG14, MTHFD1L2RAET1K2rs17080093Chr6:150676304BPEUR
113PLG29, LPA19LPAL22rs6932293, rs186696265, rs56195640, rs192425087, rs28867400, rs932631509, rs10455872, rs73596816, rs79018195, rs1998043, rs4252120, rs184278183Chr6:160114846-160756724BC, BMI, BP, C, L, PSYBLK, EUR, HISP, JPN
114MAD1L16, ELFN12rs62435159Chr7:1871645BMIEUR
115DAGLB8, RAC17rs10951983Chr7:6406396I, LEUR
116TMEM106B7, THSD7A2rs11509880Chr7:12222285L, PSYEUR
117ETV14rs2073533Chr7:13990114EUR
118TWIST15, HDAC92rs2107595Chr7:19009765BPEUR, JPN
119MACC12, ITGB82rs10486389Chr7:20260793EUR
120TBX208, DPY19L12DPY19L2P12rs2215614Chr7:35237481BHEUR
121CCM25, TBRG41rs2107732Chr7:45038379BPEUR
122SEMA3C5rs917191Chr7:80941555BMIMulti
123ZKSCAN16, AP4M15STAG3L5P2rs35146811Chr7:100123371BH, BP, LEUR
124COG59, BCAP298WBP1LP23, RPL7P322rs12112877, rs10953541Chr7:107300879-107604100L, PSY, SMEUR
125CFTR3, ASZ12rs13222797Chr7:117459992BMI, LEUR
126ZC3HC15, KLHDC102rs11556924Chr7:130023656BC, BP, I, L, PSY, SMEUR
127PARP122, HIPK21rs5887949Chr7:140060741BHEUR
128NOS35, KCNH21rs3918226Chr7:150993088ALC, BC, BP, L, SMEUR
129MSR13, CNOT71rs1480146Chr8:16272064Multi
130NAT23, PCM13rs4646249Chr8:18402921LEUR
131LPL14, CSGALNACT13rs894211, rs66778572, rs268Chr8:19956018-20058609ALC, BC, BH, BMI, BP, I, L, PSY, SMBLK, EUR, HISP
132BMP15, PHYHIP2rs56408342Chr8:22190977EUR
133DOCK56, KCTD92rs1510758Chr8:25204291EUR
134PPP2R2A2rs6557894Chr8:26229397BHEUR
135RP15rs9298506Chr8:54524964ALC, BH, I, LMulti
136C8orf342rs2380472Chr8:68519476JPN
137GEM6, CDH172rs34917849Chr8:94266079BPEUR
138NDUFAF65, TP53INP11rs3019173Chr8:95008746Multi
139rs10093110Chr8:105553186EUR
140TRIB14, NSMCE21rs2001846Chr8:125466208ALC, BMI, BP, D, I, LEUR, HISP
141NFIB2, MPDZ1LURAP1L-AS12rs10961206Chr9:13724052EUR
142ACER27, RPS61AL391834.12rs10811183Chr9:19436057LEUR
143CDKN2A13, CDKN2B11ERVFRD-36, MIR31HG4rs11523031, rs2891168, rs6475608, rs76959412Chr9:21843843-22101703BC, BP, C, LBLK, EUR, HISP, JPN
144WNK23, CARD192rs4617217Chr9:93226686Multi
145ABCA12, NIPSNAP3B2rs35093463Chr9:104823957LJPN
146KLF44, RAD23B1rs1967604Chr9:107768043BC, LEUR
147SVEP14rs111245230Chr9:110407495BC, BPEUR
148ASTN22rs7873551Chr9:116482848BH, PSYMulti
149PHF195, C54rs41312891Chr9:120964472BHEUR, Multi
150DAB2IP5, STOM1CUTALP2rs885150Chr9:121657894BC, BH, BMI, LEUR
151ABO6, CEL3rs651007Chr9:133278431BC, BP, D, I, L, PSYBLK, EUR, HISP
152CAMK1D4, CDC1232rs17566555Chr10:12233948PSYEUR
153ARHGAP214, GPR1581rs7077962Chr10:24765745Multi
154JCAD7, SVIL1rs9337951Chr10:30028144BP, SMEUR, HISP
155ZEB16, ARHGAP121ZEB1-AS15, PPIAP312rs161231Chr10:31466991LMulti
156CXCL1212, RASGEF1A2FRG1JP2rs1870634, rs494207, rs527052Chr10:43985363-44245808CBLK, EUR, HISP
157BICC17, TFAM1rs10740732Chr10:58593128BPMulti
158TSPAN147, SH2D4B2LOC1019295742rs17680741Chr10:80491758EUR
159LIPA6, IFIT11rs1051338Chr10:89247603I, LEUR, JPN
160PLCE112, SLC35G12rs1223583, rs55753709Chr10:93996743-94269413BMI, BP, L, PSYEUR
161LOXL49, R3HCC1L3rs884811Chr10:98164006BH, BPEUR
162CNNM28, BORCS75rs77787671Chr10:103016448BMI, BP, PSYEUR, HISP, JPN
163STN13, SH3PXD2A2rs2067831Chr10:103883465BP, SMEUR
164TCF7L25rs7903146Chr10:112998590BH, BMI, BP, D, L, SMMulti
165C10orf823, GFRA11rs2218584Chr10:116649131LMulti
166WDR111rs17101521Chr10:121156039BMI, BP, LMulti
167HTRA16, TACC22rs2672592, rs4752700, rs17103659Chr10:122471234-122515087EUR, HISP
168BET1L3, PSMD132rs73386640Chr11:203235JPN
169TRIM54, TRIM221rs11601507Chr11:5679844BC, LEUR
170DENND2B2, TRIM662LOC1027247842, TMEM9B-AS12rs56210063Chr11:8767618Multi
171SWAP708, TMEM41B5LOC4400282, SBF2-AS12rs4537761, rs360153Chr11:9301806-9740727BC, BP, DEUR
172CTR92MRVl12rs11042937Chr11:10723847EUR
173BMAL16, ARNTL2rs11316597Chr11:13274205BP, PSYEUR
174BDNF2, LIN7C2LINC006782rs6265Chr11:27658369ALC, BMI, BP, I, L, PSY, SMMulti
175WT14, IMMP1L2rs7118294Chr11:32358975BH, BP, LEUR
176HSD17B127, TTC171rs7116641Chr11:43675367BH, BMI, IEUR
177SIPA18, RNASEH2C3rs2306363Chr11:65638129ALC, BMI, BP, LEUR, JPN
178SERPINH117, MAP64AP001922.52rs590121, rs584961Chr11:75563105-75566583BH, BMIEUR
179ARHGAP4211, PGR1LOC1001283862rs633185, rs7947761Chr11:100722807-100753868ALC, BPEUR
180MMP132, MMP31rs1892971Chr11:102924877EUR
181PDGFD5, DYNC2H11rs2839812Chr11:103802566BMI, BPEUR, JPN
182CWF19L25, GUCY1A22rs7117780Chr11:107215397BPEUR
183RDX5, FDX14rs10488763Chr11:110373636EUR, JPN
184SIK27, CRYAB5rs11213945Chr11:111590279BPMulti
185ZPR13, BUD132rs964184Chr11:116778201LEUR, HISP
186VPS111, MCAM1rs1177562Chr11:119078621LEUR
187TLCD53, ARHGEF122rs4938809Chr11:120493228EUR
188UBASH3B6, JHY1rs57812455Chr11:122654259BC, BP, LEUR
189ST3GAL45, TIRAP2GSEC3rs10790800Chr11:126392743LEUR
190C1S4, CHD42rs72447384Chr12:7071137IEUR
191YBX36, OLR11rs2607903Chr12:10723974JPN
192PDE3A4, AEBP22rs10841443Chr12:20067099BPEUR
193ZCRB17, PPHLN17rs12820154Chr12:42389305BPMulti
194ZNF6414, CCDC1842rs1859440Chr12:48033546BC, BPEUR
195SMUG13, HOXC43FLJ128252, RP11-834C11.42rs1133773, rs75160195Chr12:54102435-54127810EUR, JPN
196COQ10A6, STAT24rs143405823Chr12:56329935BH, L, PSYMulti
197LRP17, STAT65rs11172113Chr12:57133500BH, BMI, BP, L, PSYEUR
198ATP2B15, GALNT43AC010201.22rs2681472Chr12:89615182ALC, BC, BMI, BP, PSYEUR, JPN
199FGD67, VEZT3rs11107903Chr12:95114195BCEUR, JPN
200CORO1C4, SELPLG1rs1558802Chr12:108642472L, PSYMulti
201ATXN24, SH2B32rs10774625, rs11066015Chr12:111472415-111730205ALC, BC, BMI, BP, I, L, PSY, SMEUR, JPN
202TBX34, TBX51rs34606058Chr12:114915563BC, BH, BPEUR, Multi
203KSR24, FBXW81rs11830157Chr12:117827636EUR
204HNF1A6, C12orf435RNU4-22, HNF1A-AS12rs2244608Chr12:120979185ALC, BC, I, L, PSYEUR
205ZNF6646, CCDC9211rs7133378Chr12:123924955BMI, D, L, PSY, SMEUR
206SCARB111, UBC2rs7485656, rs7296737Chr12:124831101-124852410I, LBLK, EUR
207ZNF2682, ZNF1402AC131212.32rs36127550Chr12:133203723BMI, BPMulti
208FLT15, SLC46A32rs17086617, rs74412485Chr13:28388549-28468295BH, BPEUR, JPN
209PDS5B8, N4BP2L25rs7991314Chr13:32551937BC, BH, BMI, SMEUR
210DOCK93, SLC15A11rs8000794Chr13:98782556EUR
211COL4A119, COL4A212rs11617955, rs3783113, rs11619113, rs4773141, rs9515203, rs7333991Chr13:110165755-110456089BP, C, LBLK, EUR, JPN
212F102, MCF2L1rs4907571Chr13:112964182BPEUR
213ARID4A2, ARMH42PSMA3-AS12rs2145598Chr14:58327283LEUR
214EIF2B27, MLH36rs10131894Chr14:74980176EUR
215ITPK14, ATXN32rs1956028Chr14:93040852BCMulti
216SERPINA14, DDX241rs112635299Chr14:94371805ALC, BH, BMI, BP, I, L, PSYEUR
217HHIPL111, CYP46A15AL160313.12rs36033161, rs2895811Chr14:99657150-99667605BPEUR, JPN
218EXD12, KNSTRN2OIP5-AS13rs3959554Chr15:41151726BMI, BPEUR
219NEDD43, PIGB3AC018926.12rs11633313Chr15:55843511Multi
220LIPC5, ALDH1A25HSP90AB4P2rs588136Chr15:58438299L, PSYEUR
221TRIP45, RBPMS23rs6494488Chr15:64732005LEUR
222SMAD37, SMAD63IQCH-AS12rs56062135Chr15:67163292EUR, HISP
223ADAMTS713, CTSH10AC090607.22rs7177201, rs7173743, rs112238647, rs7174727Chr15:78759363-78858944BH, BP,C, SMEUR, HISP, JPN
224CFAP1613, MESD2rs2683260Chr15:81093211EUR
225AKAP133, KLHL253LOC1019296792, AC044860.12rs7177107Chr15:85580133BCEUR
226MFGE85, ABHD24rs1807214Chr15:89022026BPEUR, JPN
227FES9, FURIN6rs7183988Chr15:90885359BP, L, PSYBLK, EUR, JPN
228NR2F22rs17581137Chr15:95603185EUR
229MYH115, NOMO12AC138969.12rs12691049Chr16:15815656AF, BPEUR
230FTO5, AKTIP1rs1421085Chr16:53767042ALC, BH, BMI, BP, D, I, L, PSY, SMBLK, EUR
231CETP6, HERPUD13rs12446515Chr16:56953103AF, BMI, BP, C, LEUR
232NOB13, NFAT52PDXDC2P3rs9302604Chr16:69542991BP, PSY, SMEUR
233DHODH7, DHX383rs12445401Chr16:72114520ALC, L, PSYEUR
234CFDP16, TMEM170A5AC009054.22rs8046696Chr16:75408245ALC, BC, BH, BP, L, SMEUR, JPN
235CMIP8, PLCG26AC009148.12rs10493891, rs7189462Chr16:81477137-81874262BP, LEUR
236CDH134, OSGIN11rs7500448Chr16:83012185BPEUR
237rs55880988Chr16:88479845L, IMulti
238SMG65, SRR3rs4790881Chr17:2165638LEUR
239TOM1L27, DRC37CCDC144BP2, USP32P22rs12936927Chr17:17823651ALC, BMI, PSY, SMEUR, HISP
240SSH28, CORO65SH3GL1P22rs11080107Chr17:29611406BH, BMIEUR
241COPRS2, NF11rs76954792Chr17:31706495BPEUR
242FBXL207, MED15rs1077715Chr17:39527295ALC, BC, L, SMEUR
243CAVIN18, DHX586NBR24, AC099811.53rs12952244, rs8068844, rs9912587Chr17:42118063-43021069BMI, D, I, LEUR, Multi
244ARHGAP275, GOSR25LINC022102, NSFP12rs5026246, rs1706731, rs1881193, rs1881194, rs2532235, rs2696671, rs17608766Chr17:45495530-46935905AF, BP, PSYEUR, HISP
245SNF810, ATP5MC110SUMO2P174, LOC1053718142rs46522, rs4643373, rs5820757Chr17:48911235-49340581ALC, BH, BMI, BP, I, L, PSYEUR
246BCAS34, PPM1D2RPL12P382rs11655024Chr17:61155004BMI, BPEUR, JPN
247PECAM15, ERN12AC046185.32rs11079536Chr17:64315043BC, BPEUR, JPN
248WIPI16, BPTF3rs2909217Chr17:68467844LEUR
249TRIM4710, UNC13D8ATF4P33rs2410859, rs78532451Chr17:75845204-75883011BP, LEUR, Multi
250rs112735431Chr17:80385145JPN
251CTAGE13, GATA63rs9951447Chr18:22429728EUR, JPN
252NPC14, RMC14rs1623003Chr18:23585199ALC, BP, L, SMEUR
253rs4327120Chr18:38953012SMMulti
254LIPG5, SMAD74AC022919.12rs9945890, rs12965923Chr18:48989546-49687312LEUR
255LMAN16, MC4R5rs11663411, rs476828Chr18:59293278-60185354ALC, BH, BMI, BP, D, I, L, PSY, SMEUR
256rs150651184Chr19:282148BLK
257DOT1L6, PLEKHJ15AC006130.32rs191615952Chr19:2236098BH, BPMulti
258KDM4B5, TICAM12rs12185519Chr19:4967728BH, BMI, LMulti
259ANGPTL46, MAP2K71rs116843064Chr19:8364439ALC, BMI, LEUR
260LDLR18, SMARCA46ZNF433-AS14, AC008770.32rs55997232, rs10422256, rs72658867, rs34774090, rs167479Chr19:11077441-11416089ALC, BC, BP, L, PSYBLK, EUR, HISP, JPN
261CYP4F22, EPS15L12rs77420750Chr19:15868934EUR
262KLF26, AP1M12rs10420373Chr19:16319866IJPN
263MYO9B6, HAUS85rs7246865Chr19:17108295BC, BMI, BPEUR
264MAP1S9, FCHO16rs10410487Chr19:17718799BC, BH, IEUR
265ELL2, ISYNA12rs78030362Chr19:18464383BC, BMI, BPEUR
266ZNF1007, ZNF4933rs8102320Chr19:21754083BPMulti
267ZNF5078, DPY19L31rs12976411Chr19:32391114EUR
268EIF3K2, ZFP302ZNF7815, LINC015352rs73025613Chr19:37843721Multi
269TGFB115, B9D26AC011462.53rs60315715, rs11466359, rs1800469Chr19:41284182-41354391BC, BPEUR, HISP, JPN
270APOE12, APOC18rs429358, rs7412, rs183657985Chr19:44908684-45239240BC, BH, BP, C, I, LBLK, EUR, JPN
271RSPH6A4, DMWD4PPP5D1P2, GEMIN7-AS12rs8108474Chr19:45798221BH, BP, LEUR
272RRBP16, DSTN3rs1132274Chr20:17615510BH, LEUR, Multi
273ITCH7, NCOA64FER1L42rs6088595Chr20:34770696BC, BH, BMI, D, I, L, SMEUR
274PROCR7, EDEM24NORAD2rs17406518Chr20:35211373BCEUR
275MAFB4rs2207132Chr20:40513876BMI, I, LEUR
276PLCG16, TOP14rs6102343Chr20:41295639BMI, LEUR
277PLTP3, CD403rs8124182Chr20:45980262LEUR
278PREX15, ARFGEF22RN7SL197P2rs2008614Chr20:48816613BPEUR
279rs4809766Chr20:49942802EUR
280GNAS3, ZNF8312APCDD1L-DT2, LINC017112rs6026739Chr20:59164414BH, BPEUR
281rs151206628Chr21:10592292HISP
282NRIP13, HSPA131rs2064040Chr21:15212021Multi
283MAP3K7CL5, BACH14LINC001893rs2832227Chr21:29160755EUR
284SLC5A36, MRPS63AP000318.22rs28451064, rs149487184Chr21:34221526-34233562BC, BMI, BPEUR
285ARVCF8, TANGO25DGCR112rs4819811, rs71313931Chr22:19621733-19972661BC, BP, IEUR
286SUSD27, GGT56POM121L9P3, GGTLC4P2rs12484557, rs5760309Chr22:24159893-24281863EUR
287OSM4, LIF3rs6006426Chr22:30273894EUR
288FBXO71rs137525Chr22:32900153Multi
289SCUBE13, TTLL122rs139012Chr22:43227966EUR
290PNPLA32, PRR52rs738408Chr22:43928850ALC, BC, LMulti
291TBL1Xrs5934659ChrX:9610064EUR
292OPHN11, AR1rs1410127ChrX:68060539Multi
293CYSLTR11, TAF9B1rs398484ChrX:78343972Multi
294VDAC1P1rs2066280ChrX:80922131EUR
295SETP4rs2342572ChrX:84814364Multi
296CHRDL11, RGAG11rs7884019ChrX:110566261EUR
297MAP7D31, FHL11rs5929743ChrX:136236818EUR
298ARHGEF61RP11-308D16.21rs5975828ChrX:136904390EUR
299DNASE1L11, ATP6AP11rs147967693ChrX:154410919Multi
Locus IDGenes (protein)Genes (RNA)Index rsIDsCoordinates (hg38)TraitsEthnicity
1SKI4, MORN13rs2843152Chr1:2314131LEUR
2PRDM167, ACTRT22rs7413494, rs2493298Chr1:3069321-3409348BPEUR
3DHDDS7, RPS6KA13DHDDS-AS12rs12046497Chr1:26521149BH, LMulti
4ARID1A7, KDF12LOC1019287282rs79598313Chr1:26958422ALC, BH, BP, I, LEUR
5FHL37, INPP5B6rs61776719Chr1:37995647BH, BMI, BPEUR
6ZMYND125, FOXO64rs12047439, rs2152314Chr1:41343968-42480791L, BPMulti
7PCSK916, USP244rs34232196, rs11591147, rs151193009, rs472495Chr1:55023869-55055640ALC, BC, L, PSYEUR, JPN
8PLPP310, FGGY8LINC013584, AC093425.12rs11206803, rs56170783, rs71646019, rs12733512Chr1:56411837-59181306BH, BMI, BP, SMEUR, HISP, JPN, Multi
9PSRC18, CELSR26rs12740374, rs655246Chr1:109274968-109289661ALC, BC, BH, BP, I, L, PSYBLK, EUR, HISP
10PHTF13, MAGI32rs1230666Chr1:113630788EUR
11NGF8, TSPAN22rs11806316, rs61797068Chr1:115210861-115359893EUR
12ECM16, MTMR115ADAMTSL4-AS12, AL356356.12rs67807996, rs11585169Chr1:150023307-150599561BH, BMI, BP, I, SMEUR
13TDRKH9, RIIAD13TDRKH-AS13rs11810571Chr1:151789832PSYEUR
14IL6R5, TPM32rs6686750Chr1:154447367IEUR
15NME79, ATP1B15rs61806987Chr1:169345595BHEUR
16KIAA00405, TNN1rs4650716Chr1:175159575EUR
17DENND1B4, CRB12rs12022672Chr1:197618876SMMulti
18DDX597, CAMSAP24DDX59-AS12rs6700559Chr1:200676945EUR
19LMOD17, IPO94IPO9-AS12rs2820315Chr1:201903136BH, BMI, BP, L, PSYEUR
20DSTYK3, NUAK23AC119673.22rs12048743Chr1:205145745LMulti
21HHAT7, SYT142RNU5A-8P2rs60154123Chr1:210295654EUR
22MIA36, AIDA4MIA3-AS12rs17163363Chr1:222655362BPEUR, HISP, JPN
23AGT5, COG21rs699Chr1:230710048BPEUR
24COLEC112RNASEH1-DT3rs56236159Chr2:3588888BC, BP, I, LMulti
25IAH13, ADAM173rs2715879Chr2:9375422EUR
26OSR13, TTC322rs16986953Chr2:19742712EUR
27APOB5, TDRD152rs13306206, rs515135Chr2:21019859-21063185BC, L, PSYEUR, JPN
28ABCG810, ABCG56rs4245791, rs76866386Chr2:43847292-43848344BC, I, L, PSYEUR
29PRKCE7, SRBD11rs582384Chr2:45669298BPEUR
30BCL11A4, REL1MIR4432HG2rs243071Chr2:60391893EUR
31GFPT15, NFU13rs4346430Chr2:69441670Multi
32GGCX7, VAMP86PARTICL2rs10176176Chr2:85534925BMI, LEUR, JPN
33IL1F105, PSD43rs6759676Chr2:113078771BP, IEUR
34SAP1305, WDR331rs114192718Chr2:128028089EUR
35ARHGAP155, KYNU1rs4662330Chr2:143428906BPEUR
36ZEB212, GTDC13LINC014123, AC009951.42rs6740731, rs17408036, rs10928241Chr2:144513025-145073861BP, SMEUR, HISP
37ACVR2A4, MBD52rs35611688Chr2:147620292EUR
38FIGN5, GRB141rs10930115Chr2:164073872BP, PSY, SMEUR, JPN
39TFPI4, CALCRL3rs840616Chr2:187331742BMI, BP, LEUR
40NBEAL17, CARF7rs148812085Chr2:203012510BMI, BP, L, PSY, SMEUR, HISP
41FN17, ATIC2rs1250247Chr2:215434906BH, BMI, BP, LEUR
42TNS15, TMBIM12rs2161967Chr2:217815806BP, LEUR, HISP
43IRS15, NYAP22rs952227Chr2:226197364ALC, BMI, BP, D, L, SMEUR
44PID15, DNER3rs4140748Chr2:229140789LEUR, JPN
45GIGYF27, SNORC4rs283485Chr2:232780981BH, BMIEUR
46COL6A34, RBM441rs11677932Chr2:237315312BPEUR
47FGD55, NR2C21rs34991912Chr3:14884844BH, BPEUR, JPN
48ZNF5897, CDC25A6AC134772.12rs7633770, rs7617773Chr3:46647072-48152025BH, BPEUR
49IP6K23, IHO13AC121247.12rs34759087Chr3:49124851BH, BMI, PSYEUR
50ITIH43, NISCH2rs77347777Chr3:52814191BMI, BPEUR
51ITGB55, UMPS4rs17843797Chr3:124734175BMIEUR
52DNAJC135, NPHP34rs10512861Chr3:132539117I, LEUR
53PCCB7, PPP2R3A5NCK1-DT3rs34330586Chr3:136081567BMI, I, LEUR
54MRAS5, PIK3CB3rs185244Chr3:138374047BMI, BP, LEUR
55ATP1B34, PLS12rs7622417Chr3:141907157BMI, LMulti
56ARHGEF268, DHX367ARHGEF26-AS13rs357494Chr3:154219964BMI, BP, LEUR, HISP
57CCNL14, TIPARP4rs4266144Chr3:157134803BH, BMIEUR
58MECOM2, SEC621rs16853198Chr3:169122391BPMulti
59FNDC3B2, ECT21rs34229028Chr3:172399666EUR
60rs73070813Chr3:187168807EUR
61HGFAC2rs16844401Chr4:3447925BC, BH, LEUR
62GNPDA21rs10938398Chr4:45184122BMI, I, LMulti
63FIP1L12, LNX11rs17083333Chr4:53705899EUR
64REST9, SPINK22rs781663Chr4:56915588BC, BH, I, LEUR, JPN
65SHROOM35, CCDC1582rs12500824Chr4:76495474L, BPEUR
66ANTXR22, PRDM81rs10857147Chr4:80259918L, BPEUR, HISP
67RASGEF1B4, PRKG21rs36002015Chr4:81704567EUR
68UNC5C2, BMPR1B2rs3775058Chr4:95196220EUR
69MAD2L15, PDE5A4rs7678555Chr4:119988346BPEUR
70PCDH182rs7439567Chr4:137543688BPMulti
71ZNF8275, MMAA1rs13124853Chr4:145863622BP, LEUR
72EDNRA14, ARHGAP103AC093908.12rs13120678, rs1878406, rs6841581Chr4:147352245-147480038BC, BPEUR, JPN
73GUCY1A110, MAP92RP11-588K22.22rs7440763, rs3796587Chr4:155512368-155716921ALC, BP, LEUR, HISP, JPN
74PALLD4, DDX60L1rs869396Chr4:168766849BPEUR
75IRX13rs10041378Chr5:4094052JPN
76SEMA5A7, TAS2R11SNHG185rs17263917Chr5:9552226BCEUR
77BASP12rs1032763Chr5:17118821Multi
78ITGA15, PELO1rs4074793Chr5:52897294L, IEUR, Multi
79ARL152, HSPB31AC027329.12rs7719168Chr5:53996560BP, LEUR
80MAP3K14, IL6ST2rs62362364, rs3936510Chr5:56145744-56565039BMI, BP, L, SMEUR
81ANKDD1B7, HMGCR6rs12916Chr5:75360714BC, BMI, L, PSYEUR
82LNPEP7, ERAP27AC009126.12rs27660Chr5:97012071BP, I, L, PSYMulti
83FER11, FBXL174LINC010233rs288173, rs112949822Chr5:108016593-108749489BH, BMI, BP, IEUR, Multi
84NREP1, WDR361rs256277Chr5:112071113Multi
85DMXL12, TNFAIP81rs13169691Chr5:119112584EUR
86SRFBP15, LOX3AC008568.12rs4345341Chr5:121943056BPEUR
87PRDM63, SNX241rs73796819Chr5:123084735Multi
88FBN28, SLC27A62rs6883598Chr5:128590497BPEUR
89IRF14, RAD504rs10477741, rs2706399Chr5:132459618-132532010LEUR
90FGF16, SPRY42rs249760, rs3776307Chr5:142536127-143114600LEUR
91SGCD4, MED72rs39929Chr5:156696640L, BPMulti
92ADAM195, FNDC91rs11465228Chr5:157575687Multi
93FOXC15, GMDS3rs72836800Chr6:1617092BHEUR
94BLOC1S51, TXNDC51rs6597292Chr6:7975026Multi
95PHACTR16, GFOD12rs9349379Chr6:12903725ALC, BC, BP, CEUR, HISP, JPN
96HDGFL14, PRL1rs6909752Chr6:22612400AFEUR
97HLA-A4, HLA-G3HLA-F-AS15, HLA-H3rs29266Chr6:29607502LEUR
98MICA4, PPP1R104rs139141104, rs9266631Chr6:31021244-31379121LEUR, JPN
99CLIC13, DDAH23SNHG322, LOC1005075472rs3130683Chr6:31920590BH, BMI, BP, L, PSYEUR
100LEMD23, UQCC23rs62397561Chr6:33816328Multi
101BLTP3A9, SNRPC8ILRUN-AS12rs9469899, rs17609940Chr6:34825347-35067023BH, BMI, L, PSYEUR
102CDKN1A5, ETV72DINOL2rs1321309Chr6:36670859BP, I, LEUR
103KCNK510, SAYSD11rs733701, rs10947789Chr6:39204086-39207146BPEUR
104PEX63, PTK71rs1034246Chr6:43100632EUR
105VEGFA4, MRPS18A1rs6905288, rs149372871Chr6:43791136-44080314ALC, BMI, BP, L, PSYEUR, HISP, JPN
106RAB2310, PRIM26LOC1005061884, RP11-203B9.42rs11752218, rs9367716Chr6:57280764-57295774EUR
107CD1096CD109-AS12rs79717953, rs56171536Chr6:73695048-73706145JPN, Multi
108TENT5A4, IBTK1LINC0254`22rs9361867Chr6:81886242EUR
109UFL16, FHL55rs2983896Chr6:96581995BPEUR
110CENPW8, TRMT112rs35510806Chr6:126357186BH, I, L, PSYEUR
111TCF2113, SLC2A127TARID3rs6919211, rs2327426, rs2492304Chr6:133678730-134057013BH, BPEUR, HISP, JPN
112PLEKHG14, MTHFD1L2RAET1K2rs17080093Chr6:150676304BPEUR
113PLG29, LPA19LPAL22rs6932293, rs186696265, rs56195640, rs192425087, rs28867400, rs932631509, rs10455872, rs73596816, rs79018195, rs1998043, rs4252120, rs184278183Chr6:160114846-160756724BC, BMI, BP, C, L, PSYBLK, EUR, HISP, JPN
114MAD1L16, ELFN12rs62435159Chr7:1871645BMIEUR
115DAGLB8, RAC17rs10951983Chr7:6406396I, LEUR
116TMEM106B7, THSD7A2rs11509880Chr7:12222285L, PSYEUR
117ETV14rs2073533Chr7:13990114EUR
118TWIST15, HDAC92rs2107595Chr7:19009765BPEUR, JPN
119MACC12, ITGB82rs10486389Chr7:20260793EUR
120TBX208, DPY19L12DPY19L2P12rs2215614Chr7:35237481BHEUR
121CCM25, TBRG41rs2107732Chr7:45038379BPEUR
122SEMA3C5rs917191Chr7:80941555BMIMulti
123ZKSCAN16, AP4M15STAG3L5P2rs35146811Chr7:100123371BH, BP, LEUR
124COG59, BCAP298WBP1LP23, RPL7P322rs12112877, rs10953541Chr7:107300879-107604100L, PSY, SMEUR
125CFTR3, ASZ12rs13222797Chr7:117459992BMI, LEUR
126ZC3HC15, KLHDC102rs11556924Chr7:130023656BC, BP, I, L, PSY, SMEUR
127PARP122, HIPK21rs5887949Chr7:140060741BHEUR
128NOS35, KCNH21rs3918226Chr7:150993088ALC, BC, BP, L, SMEUR
129MSR13, CNOT71rs1480146Chr8:16272064Multi
130NAT23, PCM13rs4646249Chr8:18402921LEUR
131LPL14, CSGALNACT13rs894211, rs66778572, rs268Chr8:19956018-20058609ALC, BC, BH, BMI, BP, I, L, PSY, SMBLK, EUR, HISP
132BMP15, PHYHIP2rs56408342Chr8:22190977EUR
133DOCK56, KCTD92rs1510758Chr8:25204291EUR
134PPP2R2A2rs6557894Chr8:26229397BHEUR
135RP15rs9298506Chr8:54524964ALC, BH, I, LMulti
136C8orf342rs2380472Chr8:68519476JPN
137GEM6, CDH172rs34917849Chr8:94266079BPEUR
138NDUFAF65, TP53INP11rs3019173Chr8:95008746Multi
139rs10093110Chr8:105553186EUR
140TRIB14, NSMCE21rs2001846Chr8:125466208ALC, BMI, BP, D, I, LEUR, HISP
141NFIB2, MPDZ1LURAP1L-AS12rs10961206Chr9:13724052EUR
142ACER27, RPS61AL391834.12rs10811183Chr9:19436057LEUR
143CDKN2A13, CDKN2B11ERVFRD-36, MIR31HG4rs11523031, rs2891168, rs6475608, rs76959412Chr9:21843843-22101703BC, BP, C, LBLK, EUR, HISP, JPN
144WNK23, CARD192rs4617217Chr9:93226686Multi
145ABCA12, NIPSNAP3B2rs35093463Chr9:104823957LJPN
146KLF44, RAD23B1rs1967604Chr9:107768043BC, LEUR
147SVEP14rs111245230Chr9:110407495BC, BPEUR
148ASTN22rs7873551Chr9:116482848BH, PSYMulti
149PHF195, C54rs41312891Chr9:120964472BHEUR, Multi
150DAB2IP5, STOM1CUTALP2rs885150Chr9:121657894BC, BH, BMI, LEUR
151ABO6, CEL3rs651007Chr9:133278431BC, BP, D, I, L, PSYBLK, EUR, HISP
152CAMK1D4, CDC1232rs17566555Chr10:12233948PSYEUR
153ARHGAP214, GPR1581rs7077962Chr10:24765745Multi
154JCAD7, SVIL1rs9337951Chr10:30028144BP, SMEUR, HISP
155ZEB16, ARHGAP121ZEB1-AS15, PPIAP312rs161231Chr10:31466991LMulti
156CXCL1212, RASGEF1A2FRG1JP2rs1870634, rs494207, rs527052Chr10:43985363-44245808CBLK, EUR, HISP
157BICC17, TFAM1rs10740732Chr10:58593128BPMulti
158TSPAN147, SH2D4B2LOC1019295742rs17680741Chr10:80491758EUR
159LIPA6, IFIT11rs1051338Chr10:89247603I, LEUR, JPN
160PLCE112, SLC35G12rs1223583, rs55753709Chr10:93996743-94269413BMI, BP, L, PSYEUR
161LOXL49, R3HCC1L3rs884811Chr10:98164006BH, BPEUR
162CNNM28, BORCS75rs77787671Chr10:103016448BMI, BP, PSYEUR, HISP, JPN
163STN13, SH3PXD2A2rs2067831Chr10:103883465BP, SMEUR
164TCF7L25rs7903146Chr10:112998590BH, BMI, BP, D, L, SMMulti
165C10orf823, GFRA11rs2218584Chr10:116649131LMulti
166WDR111rs17101521Chr10:121156039BMI, BP, LMulti
167HTRA16, TACC22rs2672592, rs4752700, rs17103659Chr10:122471234-122515087EUR, HISP
168BET1L3, PSMD132rs73386640Chr11:203235JPN
169TRIM54, TRIM221rs11601507Chr11:5679844BC, LEUR
170DENND2B2, TRIM662LOC1027247842, TMEM9B-AS12rs56210063Chr11:8767618Multi
171SWAP708, TMEM41B5LOC4400282, SBF2-AS12rs4537761, rs360153Chr11:9301806-9740727BC, BP, DEUR
172CTR92MRVl12rs11042937Chr11:10723847EUR
173BMAL16, ARNTL2rs11316597Chr11:13274205BP, PSYEUR
174BDNF2, LIN7C2LINC006782rs6265Chr11:27658369ALC, BMI, BP, I, L, PSY, SMMulti
175WT14, IMMP1L2rs7118294Chr11:32358975BH, BP, LEUR
176HSD17B127, TTC171rs7116641Chr11:43675367BH, BMI, IEUR
177SIPA18, RNASEH2C3rs2306363Chr11:65638129ALC, BMI, BP, LEUR, JPN
178SERPINH117, MAP64AP001922.52rs590121, rs584961Chr11:75563105-75566583BH, BMIEUR
179ARHGAP4211, PGR1LOC1001283862rs633185, rs7947761Chr11:100722807-100753868ALC, BPEUR
180MMP132, MMP31rs1892971Chr11:102924877EUR
181PDGFD5, DYNC2H11rs2839812Chr11:103802566BMI, BPEUR, JPN
182CWF19L25, GUCY1A22rs7117780Chr11:107215397BPEUR
183RDX5, FDX14rs10488763Chr11:110373636EUR, JPN
184SIK27, CRYAB5rs11213945Chr11:111590279BPMulti
185ZPR13, BUD132rs964184Chr11:116778201LEUR, HISP
186VPS111, MCAM1rs1177562Chr11:119078621LEUR
187TLCD53, ARHGEF122rs4938809Chr11:120493228EUR
188UBASH3B6, JHY1rs57812455Chr11:122654259BC, BP, LEUR
189ST3GAL45, TIRAP2GSEC3rs10790800Chr11:126392743LEUR
190C1S4, CHD42rs72447384Chr12:7071137IEUR
191YBX36, OLR11rs2607903Chr12:10723974JPN
192PDE3A4, AEBP22rs10841443Chr12:20067099BPEUR
193ZCRB17, PPHLN17rs12820154Chr12:42389305BPMulti
194ZNF6414, CCDC1842rs1859440Chr12:48033546BC, BPEUR
195SMUG13, HOXC43FLJ128252, RP11-834C11.42rs1133773, rs75160195Chr12:54102435-54127810EUR, JPN
196COQ10A6, STAT24rs143405823Chr12:56329935BH, L, PSYMulti
197LRP17, STAT65rs11172113Chr12:57133500BH, BMI, BP, L, PSYEUR
198ATP2B15, GALNT43AC010201.22rs2681472Chr12:89615182ALC, BC, BMI, BP, PSYEUR, JPN
199FGD67, VEZT3rs11107903Chr12:95114195BCEUR, JPN
200CORO1C4, SELPLG1rs1558802Chr12:108642472L, PSYMulti
201ATXN24, SH2B32rs10774625, rs11066015Chr12:111472415-111730205ALC, BC, BMI, BP, I, L, PSY, SMEUR, JPN
202TBX34, TBX51rs34606058Chr12:114915563BC, BH, BPEUR, Multi
203KSR24, FBXW81rs11830157Chr12:117827636EUR
204HNF1A6, C12orf435RNU4-22, HNF1A-AS12rs2244608Chr12:120979185ALC, BC, I, L, PSYEUR
205ZNF6646, CCDC9211rs7133378Chr12:123924955BMI, D, L, PSY, SMEUR
206SCARB111, UBC2rs7485656, rs7296737Chr12:124831101-124852410I, LBLK, EUR
207ZNF2682, ZNF1402AC131212.32rs36127550Chr12:133203723BMI, BPMulti
208FLT15, SLC46A32rs17086617, rs74412485Chr13:28388549-28468295BH, BPEUR, JPN
209PDS5B8, N4BP2L25rs7991314Chr13:32551937BC, BH, BMI, SMEUR
210DOCK93, SLC15A11rs8000794Chr13:98782556EUR
211COL4A119, COL4A212rs11617955, rs3783113, rs11619113, rs4773141, rs9515203, rs7333991Chr13:110165755-110456089BP, C, LBLK, EUR, JPN
212F102, MCF2L1rs4907571Chr13:112964182BPEUR
213ARID4A2, ARMH42PSMA3-AS12rs2145598Chr14:58327283LEUR
214EIF2B27, MLH36rs10131894Chr14:74980176EUR
215ITPK14, ATXN32rs1956028Chr14:93040852BCMulti
216SERPINA14, DDX241rs112635299Chr14:94371805ALC, BH, BMI, BP, I, L, PSYEUR
217HHIPL111, CYP46A15AL160313.12rs36033161, rs2895811Chr14:99657150-99667605BPEUR, JPN
218EXD12, KNSTRN2OIP5-AS13rs3959554Chr15:41151726BMI, BPEUR
219NEDD43, PIGB3AC018926.12rs11633313Chr15:55843511Multi
220LIPC5, ALDH1A25HSP90AB4P2rs588136Chr15:58438299L, PSYEUR
221TRIP45, RBPMS23rs6494488Chr15:64732005LEUR
222SMAD37, SMAD63IQCH-AS12rs56062135Chr15:67163292EUR, HISP
223ADAMTS713, CTSH10AC090607.22rs7177201, rs7173743, rs112238647, rs7174727Chr15:78759363-78858944BH, BP,C, SMEUR, HISP, JPN
224CFAP1613, MESD2rs2683260Chr15:81093211EUR
225AKAP133, KLHL253LOC1019296792, AC044860.12rs7177107Chr15:85580133BCEUR
226MFGE85, ABHD24rs1807214Chr15:89022026BPEUR, JPN
227FES9, FURIN6rs7183988Chr15:90885359BP, L, PSYBLK, EUR, JPN
228NR2F22rs17581137Chr15:95603185EUR
229MYH115, NOMO12AC138969.12rs12691049Chr16:15815656AF, BPEUR
230FTO5, AKTIP1rs1421085Chr16:53767042ALC, BH, BMI, BP, D, I, L, PSY, SMBLK, EUR
231CETP6, HERPUD13rs12446515Chr16:56953103AF, BMI, BP, C, LEUR
232NOB13, NFAT52PDXDC2P3rs9302604Chr16:69542991BP, PSY, SMEUR
233DHODH7, DHX383rs12445401Chr16:72114520ALC, L, PSYEUR
234CFDP16, TMEM170A5AC009054.22rs8046696Chr16:75408245ALC, BC, BH, BP, L, SMEUR, JPN
235CMIP8, PLCG26AC009148.12rs10493891, rs7189462Chr16:81477137-81874262BP, LEUR
236CDH134, OSGIN11rs7500448Chr16:83012185BPEUR
237rs55880988Chr16:88479845L, IMulti
238SMG65, SRR3rs4790881Chr17:2165638LEUR
239TOM1L27, DRC37CCDC144BP2, USP32P22rs12936927Chr17:17823651ALC, BMI, PSY, SMEUR, HISP
240SSH28, CORO65SH3GL1P22rs11080107Chr17:29611406BH, BMIEUR
241COPRS2, NF11rs76954792Chr17:31706495BPEUR
242FBXL207, MED15rs1077715Chr17:39527295ALC, BC, L, SMEUR
243CAVIN18, DHX586NBR24, AC099811.53rs12952244, rs8068844, rs9912587Chr17:42118063-43021069BMI, D, I, LEUR, Multi
244ARHGAP275, GOSR25LINC022102, NSFP12rs5026246, rs1706731, rs1881193, rs1881194, rs2532235, rs2696671, rs17608766Chr17:45495530-46935905AF, BP, PSYEUR, HISP
245SNF810, ATP5MC110SUMO2P174, LOC1053718142rs46522, rs4643373, rs5820757Chr17:48911235-49340581ALC, BH, BMI, BP, I, L, PSYEUR
246BCAS34, PPM1D2RPL12P382rs11655024Chr17:61155004BMI, BPEUR, JPN
247PECAM15, ERN12AC046185.32rs11079536Chr17:64315043BC, BPEUR, JPN
248WIPI16, BPTF3rs2909217Chr17:68467844LEUR
249TRIM4710, UNC13D8ATF4P33rs2410859, rs78532451Chr17:75845204-75883011BP, LEUR, Multi
250rs112735431Chr17:80385145JPN
251CTAGE13, GATA63rs9951447Chr18:22429728EUR, JPN
252NPC14, RMC14rs1623003Chr18:23585199ALC, BP, L, SMEUR
253rs4327120Chr18:38953012SMMulti
254LIPG5, SMAD74AC022919.12rs9945890, rs12965923Chr18:48989546-49687312LEUR
255LMAN16, MC4R5rs11663411, rs476828Chr18:59293278-60185354ALC, BH, BMI, BP, D, I, L, PSY, SMEUR
256rs150651184Chr19:282148BLK
257DOT1L6, PLEKHJ15AC006130.32rs191615952Chr19:2236098BH, BPMulti
258KDM4B5, TICAM12rs12185519Chr19:4967728BH, BMI, LMulti
259ANGPTL46, MAP2K71rs116843064Chr19:8364439ALC, BMI, LEUR
260LDLR18, SMARCA46ZNF433-AS14, AC008770.32rs55997232, rs10422256, rs72658867, rs34774090, rs167479Chr19:11077441-11416089ALC, BC, BP, L, PSYBLK, EUR, HISP, JPN
261CYP4F22, EPS15L12rs77420750Chr19:15868934EUR
262KLF26, AP1M12rs10420373Chr19:16319866IJPN
263MYO9B6, HAUS85rs7246865Chr19:17108295BC, BMI, BPEUR
264MAP1S9, FCHO16rs10410487Chr19:17718799BC, BH, IEUR
265ELL2, ISYNA12rs78030362Chr19:18464383BC, BMI, BPEUR
266ZNF1007, ZNF4933rs8102320Chr19:21754083BPMulti
267ZNF5078, DPY19L31rs12976411Chr19:32391114EUR
268EIF3K2, ZFP302ZNF7815, LINC015352rs73025613Chr19:37843721Multi
269TGFB115, B9D26AC011462.53rs60315715, rs11466359, rs1800469Chr19:41284182-41354391BC, BPEUR, HISP, JPN
270APOE12, APOC18rs429358, rs7412, rs183657985Chr19:44908684-45239240BC, BH, BP, C, I, LBLK, EUR, JPN
271RSPH6A4, DMWD4PPP5D1P2, GEMIN7-AS12rs8108474Chr19:45798221BH, BP, LEUR
272RRBP16, DSTN3rs1132274Chr20:17615510BH, LEUR, Multi
273ITCH7, NCOA64FER1L42rs6088595Chr20:34770696BC, BH, BMI, D, I, L, SMEUR
274PROCR7, EDEM24NORAD2rs17406518Chr20:35211373BCEUR
275MAFB4rs2207132Chr20:40513876BMI, I, LEUR
276PLCG16, TOP14rs6102343Chr20:41295639BMI, LEUR
277PLTP3, CD403rs8124182Chr20:45980262LEUR
278PREX15, ARFGEF22RN7SL197P2rs2008614Chr20:48816613BPEUR
279rs4809766Chr20:49942802EUR
280GNAS3, ZNF8312APCDD1L-DT2, LINC017112rs6026739Chr20:59164414BH, BPEUR
281rs151206628Chr21:10592292HISP
282NRIP13, HSPA131rs2064040Chr21:15212021Multi
283MAP3K7CL5, BACH14LINC001893rs2832227Chr21:29160755EUR
284SLC5A36, MRPS63AP000318.22rs28451064, rs149487184Chr21:34221526-34233562BC, BMI, BPEUR
285ARVCF8, TANGO25DGCR112rs4819811, rs71313931Chr22:19621733-19972661BC, BP, IEUR
286SUSD27, GGT56POM121L9P3, GGTLC4P2rs12484557, rs5760309Chr22:24159893-24281863EUR
287OSM4, LIF3rs6006426Chr22:30273894EUR
288FBXO71rs137525Chr22:32900153Multi
289SCUBE13, TTLL122rs139012Chr22:43227966EUR
290PNPLA32, PRR52rs738408Chr22:43928850ALC, BC, LMulti
291TBL1Xrs5934659ChrX:9610064EUR
292OPHN11, AR1rs1410127ChrX:68060539Multi
293CYSLTR11, TAF9B1rs398484ChrX:78343972Multi
294VDAC1P1rs2066280ChrX:80922131EUR
295SETP4rs2342572ChrX:84814364Multi
296CHRDL11, RGAG11rs7884019ChrX:110566261EUR
297MAP7D31, FHL11rs5929743ChrX:136236818EUR
298ARHGEF61RP11-308D16.21rs5975828ChrX:136904390EUR
299DNASE1L11, ATP6AP11rs147967693ChrX:154410919Multi

In total, 393 independent CAD associations were collapsed into 290 autosomal and 9 X-linked genetic loci (locus ID) based on the proximal or most likely causal gene(s), including protein and RNA coding genes. The internal confidence score (cs) for causality is displayed as a superscript number [max. score = 29 for plasminogen (PLG)]. The column ‘index rsIDs' includes independent CAD associations within one gene region. Additional associations for CAD risk factors are shown in column ‘Traits’, including lipids (L), body mass index (BMI), body height (BH), blood pressure (BP), inflammation (I), calcification (C), blood coagulation (BC), diabetes (D), alcohol intake (ALC), smoking (SM), and psychological factors (e.g. sleep) (PSY). The last column shows the main ethnic groups for which CAD risk variants were identified (EUR = European, JPN = Japanese, HISP = Hispanic, BLK = black/African American, and Multi = mixed cohort).

Table 1

Summary of genome-wide significant CAD risk loci

Locus IDGenes (protein)Genes (RNA)Index rsIDsCoordinates (hg38)TraitsEthnicity
1SKI4, MORN13rs2843152Chr1:2314131LEUR
2PRDM167, ACTRT22rs7413494, rs2493298Chr1:3069321-3409348BPEUR
3DHDDS7, RPS6KA13DHDDS-AS12rs12046497Chr1:26521149BH, LMulti
4ARID1A7, KDF12LOC1019287282rs79598313Chr1:26958422ALC, BH, BP, I, LEUR
5FHL37, INPP5B6rs61776719Chr1:37995647BH, BMI, BPEUR
6ZMYND125, FOXO64rs12047439, rs2152314Chr1:41343968-42480791L, BPMulti
7PCSK916, USP244rs34232196, rs11591147, rs151193009, rs472495Chr1:55023869-55055640ALC, BC, L, PSYEUR, JPN
8PLPP310, FGGY8LINC013584, AC093425.12rs11206803, rs56170783, rs71646019, rs12733512Chr1:56411837-59181306BH, BMI, BP, SMEUR, HISP, JPN, Multi
9PSRC18, CELSR26rs12740374, rs655246Chr1:109274968-109289661ALC, BC, BH, BP, I, L, PSYBLK, EUR, HISP
10PHTF13, MAGI32rs1230666Chr1:113630788EUR
11NGF8, TSPAN22rs11806316, rs61797068Chr1:115210861-115359893EUR
12ECM16, MTMR115ADAMTSL4-AS12, AL356356.12rs67807996, rs11585169Chr1:150023307-150599561BH, BMI, BP, I, SMEUR
13TDRKH9, RIIAD13TDRKH-AS13rs11810571Chr1:151789832PSYEUR
14IL6R5, TPM32rs6686750Chr1:154447367IEUR
15NME79, ATP1B15rs61806987Chr1:169345595BHEUR
16KIAA00405, TNN1rs4650716Chr1:175159575EUR
17DENND1B4, CRB12rs12022672Chr1:197618876SMMulti
18DDX597, CAMSAP24DDX59-AS12rs6700559Chr1:200676945EUR
19LMOD17, IPO94IPO9-AS12rs2820315Chr1:201903136BH, BMI, BP, L, PSYEUR
20DSTYK3, NUAK23AC119673.22rs12048743Chr1:205145745LMulti
21HHAT7, SYT142RNU5A-8P2rs60154123Chr1:210295654EUR
22MIA36, AIDA4MIA3-AS12rs17163363Chr1:222655362BPEUR, HISP, JPN
23AGT5, COG21rs699Chr1:230710048BPEUR
24COLEC112RNASEH1-DT3rs56236159Chr2:3588888BC, BP, I, LMulti
25IAH13, ADAM173rs2715879Chr2:9375422EUR
26OSR13, TTC322rs16986953Chr2:19742712EUR
27APOB5, TDRD152rs13306206, rs515135Chr2:21019859-21063185BC, L, PSYEUR, JPN
28ABCG810, ABCG56rs4245791, rs76866386Chr2:43847292-43848344BC, I, L, PSYEUR
29PRKCE7, SRBD11rs582384Chr2:45669298BPEUR
30BCL11A4, REL1MIR4432HG2rs243071Chr2:60391893EUR
31GFPT15, NFU13rs4346430Chr2:69441670Multi
32GGCX7, VAMP86PARTICL2rs10176176Chr2:85534925BMI, LEUR, JPN
33IL1F105, PSD43rs6759676Chr2:113078771BP, IEUR
34SAP1305, WDR331rs114192718Chr2:128028089EUR
35ARHGAP155, KYNU1rs4662330Chr2:143428906BPEUR
36ZEB212, GTDC13LINC014123, AC009951.42rs6740731, rs17408036, rs10928241Chr2:144513025-145073861BP, SMEUR, HISP
37ACVR2A4, MBD52rs35611688Chr2:147620292EUR
38FIGN5, GRB141rs10930115Chr2:164073872BP, PSY, SMEUR, JPN
39TFPI4, CALCRL3rs840616Chr2:187331742BMI, BP, LEUR
40NBEAL17, CARF7rs148812085Chr2:203012510BMI, BP, L, PSY, SMEUR, HISP
41FN17, ATIC2rs1250247Chr2:215434906BH, BMI, BP, LEUR
42TNS15, TMBIM12rs2161967Chr2:217815806BP, LEUR, HISP
43IRS15, NYAP22rs952227Chr2:226197364ALC, BMI, BP, D, L, SMEUR
44PID15, DNER3rs4140748Chr2:229140789LEUR, JPN
45GIGYF27, SNORC4rs283485Chr2:232780981BH, BMIEUR
46COL6A34, RBM441rs11677932Chr2:237315312BPEUR
47FGD55, NR2C21rs34991912Chr3:14884844BH, BPEUR, JPN
48ZNF5897, CDC25A6AC134772.12rs7633770, rs7617773Chr3:46647072-48152025BH, BPEUR
49IP6K23, IHO13AC121247.12rs34759087Chr3:49124851BH, BMI, PSYEUR
50ITIH43, NISCH2rs77347777Chr3:52814191BMI, BPEUR
51ITGB55, UMPS4rs17843797Chr3:124734175BMIEUR
52DNAJC135, NPHP34rs10512861Chr3:132539117I, LEUR
53PCCB7, PPP2R3A5NCK1-DT3rs34330586Chr3:136081567BMI, I, LEUR
54MRAS5, PIK3CB3rs185244Chr3:138374047BMI, BP, LEUR
55ATP1B34, PLS12rs7622417Chr3:141907157BMI, LMulti
56ARHGEF268, DHX367ARHGEF26-AS13rs357494Chr3:154219964BMI, BP, LEUR, HISP
57CCNL14, TIPARP4rs4266144Chr3:157134803BH, BMIEUR
58MECOM2, SEC621rs16853198Chr3:169122391BPMulti
59FNDC3B2, ECT21rs34229028Chr3:172399666EUR
60rs73070813Chr3:187168807EUR
61HGFAC2rs16844401Chr4:3447925BC, BH, LEUR
62GNPDA21rs10938398Chr4:45184122BMI, I, LMulti
63FIP1L12, LNX11rs17083333Chr4:53705899EUR
64REST9, SPINK22rs781663Chr4:56915588BC, BH, I, LEUR, JPN
65SHROOM35, CCDC1582rs12500824Chr4:76495474L, BPEUR
66ANTXR22, PRDM81rs10857147Chr4:80259918L, BPEUR, HISP
67RASGEF1B4, PRKG21rs36002015Chr4:81704567EUR
68UNC5C2, BMPR1B2rs3775058Chr4:95196220EUR
69MAD2L15, PDE5A4rs7678555Chr4:119988346BPEUR
70PCDH182rs7439567Chr4:137543688BPMulti
71ZNF8275, MMAA1rs13124853Chr4:145863622BP, LEUR
72EDNRA14, ARHGAP103AC093908.12rs13120678, rs1878406, rs6841581Chr4:147352245-147480038BC, BPEUR, JPN
73GUCY1A110, MAP92RP11-588K22.22rs7440763, rs3796587Chr4:155512368-155716921ALC, BP, LEUR, HISP, JPN
74PALLD4, DDX60L1rs869396Chr4:168766849BPEUR
75IRX13rs10041378Chr5:4094052JPN
76SEMA5A7, TAS2R11SNHG185rs17263917Chr5:9552226BCEUR
77BASP12rs1032763Chr5:17118821Multi
78ITGA15, PELO1rs4074793Chr5:52897294L, IEUR, Multi
79ARL152, HSPB31AC027329.12rs7719168Chr5:53996560BP, LEUR
80MAP3K14, IL6ST2rs62362364, rs3936510Chr5:56145744-56565039BMI, BP, L, SMEUR
81ANKDD1B7, HMGCR6rs12916Chr5:75360714BC, BMI, L, PSYEUR
82LNPEP7, ERAP27AC009126.12rs27660Chr5:97012071BP, I, L, PSYMulti
83FER11, FBXL174LINC010233rs288173, rs112949822Chr5:108016593-108749489BH, BMI, BP, IEUR, Multi
84NREP1, WDR361rs256277Chr5:112071113Multi
85DMXL12, TNFAIP81rs13169691Chr5:119112584EUR
86SRFBP15, LOX3AC008568.12rs4345341Chr5:121943056BPEUR
87PRDM63, SNX241rs73796819Chr5:123084735Multi
88FBN28, SLC27A62rs6883598Chr5:128590497BPEUR
89IRF14, RAD504rs10477741, rs2706399Chr5:132459618-132532010LEUR
90FGF16, SPRY42rs249760, rs3776307Chr5:142536127-143114600LEUR
91SGCD4, MED72rs39929Chr5:156696640L, BPMulti
92ADAM195, FNDC91rs11465228Chr5:157575687Multi
93FOXC15, GMDS3rs72836800Chr6:1617092BHEUR
94BLOC1S51, TXNDC51rs6597292Chr6:7975026Multi
95PHACTR16, GFOD12rs9349379Chr6:12903725ALC, BC, BP, CEUR, HISP, JPN
96HDGFL14, PRL1rs6909752Chr6:22612400AFEUR
97HLA-A4, HLA-G3HLA-F-AS15, HLA-H3rs29266Chr6:29607502LEUR
98MICA4, PPP1R104rs139141104, rs9266631Chr6:31021244-31379121LEUR, JPN
99CLIC13, DDAH23SNHG322, LOC1005075472rs3130683Chr6:31920590BH, BMI, BP, L, PSYEUR
100LEMD23, UQCC23rs62397561Chr6:33816328Multi
101BLTP3A9, SNRPC8ILRUN-AS12rs9469899, rs17609940Chr6:34825347-35067023BH, BMI, L, PSYEUR
102CDKN1A5, ETV72DINOL2rs1321309Chr6:36670859BP, I, LEUR
103KCNK510, SAYSD11rs733701, rs10947789Chr6:39204086-39207146BPEUR
104PEX63, PTK71rs1034246Chr6:43100632EUR
105VEGFA4, MRPS18A1rs6905288, rs149372871Chr6:43791136-44080314ALC, BMI, BP, L, PSYEUR, HISP, JPN
106RAB2310, PRIM26LOC1005061884, RP11-203B9.42rs11752218, rs9367716Chr6:57280764-57295774EUR
107CD1096CD109-AS12rs79717953, rs56171536Chr6:73695048-73706145JPN, Multi
108TENT5A4, IBTK1LINC0254`22rs9361867Chr6:81886242EUR
109UFL16, FHL55rs2983896Chr6:96581995BPEUR
110CENPW8, TRMT112rs35510806Chr6:126357186BH, I, L, PSYEUR
111TCF2113, SLC2A127TARID3rs6919211, rs2327426, rs2492304Chr6:133678730-134057013BH, BPEUR, HISP, JPN
112PLEKHG14, MTHFD1L2RAET1K2rs17080093Chr6:150676304BPEUR
113PLG29, LPA19LPAL22rs6932293, rs186696265, rs56195640, rs192425087, rs28867400, rs932631509, rs10455872, rs73596816, rs79018195, rs1998043, rs4252120, rs184278183Chr6:160114846-160756724BC, BMI, BP, C, L, PSYBLK, EUR, HISP, JPN
114MAD1L16, ELFN12rs62435159Chr7:1871645BMIEUR
115DAGLB8, RAC17rs10951983Chr7:6406396I, LEUR
116TMEM106B7, THSD7A2rs11509880Chr7:12222285L, PSYEUR
117ETV14rs2073533Chr7:13990114EUR
118TWIST15, HDAC92rs2107595Chr7:19009765BPEUR, JPN
119MACC12, ITGB82rs10486389Chr7:20260793EUR
120TBX208, DPY19L12DPY19L2P12rs2215614Chr7:35237481BHEUR
121CCM25, TBRG41rs2107732Chr7:45038379BPEUR
122SEMA3C5rs917191Chr7:80941555BMIMulti
123ZKSCAN16, AP4M15STAG3L5P2rs35146811Chr7:100123371BH, BP, LEUR
124COG59, BCAP298WBP1LP23, RPL7P322rs12112877, rs10953541Chr7:107300879-107604100L, PSY, SMEUR
125CFTR3, ASZ12rs13222797Chr7:117459992BMI, LEUR
126ZC3HC15, KLHDC102rs11556924Chr7:130023656BC, BP, I, L, PSY, SMEUR
127PARP122, HIPK21rs5887949Chr7:140060741BHEUR
128NOS35, KCNH21rs3918226Chr7:150993088ALC, BC, BP, L, SMEUR
129MSR13, CNOT71rs1480146Chr8:16272064Multi
130NAT23, PCM13rs4646249Chr8:18402921LEUR
131LPL14, CSGALNACT13rs894211, rs66778572, rs268Chr8:19956018-20058609ALC, BC, BH, BMI, BP, I, L, PSY, SMBLK, EUR, HISP
132BMP15, PHYHIP2rs56408342Chr8:22190977EUR
133DOCK56, KCTD92rs1510758Chr8:25204291EUR
134PPP2R2A2rs6557894Chr8:26229397BHEUR
135RP15rs9298506Chr8:54524964ALC, BH, I, LMulti
136C8orf342rs2380472Chr8:68519476JPN
137GEM6, CDH172rs34917849Chr8:94266079BPEUR
138NDUFAF65, TP53INP11rs3019173Chr8:95008746Multi
139rs10093110Chr8:105553186EUR
140TRIB14, NSMCE21rs2001846Chr8:125466208ALC, BMI, BP, D, I, LEUR, HISP
141NFIB2, MPDZ1LURAP1L-AS12rs10961206Chr9:13724052EUR
142ACER27, RPS61AL391834.12rs10811183Chr9:19436057LEUR
143CDKN2A13, CDKN2B11ERVFRD-36, MIR31HG4rs11523031, rs2891168, rs6475608, rs76959412Chr9:21843843-22101703BC, BP, C, LBLK, EUR, HISP, JPN
144WNK23, CARD192rs4617217Chr9:93226686Multi
145ABCA12, NIPSNAP3B2rs35093463Chr9:104823957LJPN
146KLF44, RAD23B1rs1967604Chr9:107768043BC, LEUR
147SVEP14rs111245230Chr9:110407495BC, BPEUR
148ASTN22rs7873551Chr9:116482848BH, PSYMulti
149PHF195, C54rs41312891Chr9:120964472BHEUR, Multi
150DAB2IP5, STOM1CUTALP2rs885150Chr9:121657894BC, BH, BMI, LEUR
151ABO6, CEL3rs651007Chr9:133278431BC, BP, D, I, L, PSYBLK, EUR, HISP
152CAMK1D4, CDC1232rs17566555Chr10:12233948PSYEUR
153ARHGAP214, GPR1581rs7077962Chr10:24765745Multi
154JCAD7, SVIL1rs9337951Chr10:30028144BP, SMEUR, HISP
155ZEB16, ARHGAP121ZEB1-AS15, PPIAP312rs161231Chr10:31466991LMulti
156CXCL1212, RASGEF1A2FRG1JP2rs1870634, rs494207, rs527052Chr10:43985363-44245808CBLK, EUR, HISP
157BICC17, TFAM1rs10740732Chr10:58593128BPMulti
158TSPAN147, SH2D4B2LOC1019295742rs17680741Chr10:80491758EUR
159LIPA6, IFIT11rs1051338Chr10:89247603I, LEUR, JPN
160PLCE112, SLC35G12rs1223583, rs55753709Chr10:93996743-94269413BMI, BP, L, PSYEUR
161LOXL49, R3HCC1L3rs884811Chr10:98164006BH, BPEUR
162CNNM28, BORCS75rs77787671Chr10:103016448BMI, BP, PSYEUR, HISP, JPN
163STN13, SH3PXD2A2rs2067831Chr10:103883465BP, SMEUR
164TCF7L25rs7903146Chr10:112998590BH, BMI, BP, D, L, SMMulti
165C10orf823, GFRA11rs2218584Chr10:116649131LMulti
166WDR111rs17101521Chr10:121156039BMI, BP, LMulti
167HTRA16, TACC22rs2672592, rs4752700, rs17103659Chr10:122471234-122515087EUR, HISP
168BET1L3, PSMD132rs73386640Chr11:203235JPN
169TRIM54, TRIM221rs11601507Chr11:5679844BC, LEUR
170DENND2B2, TRIM662LOC1027247842, TMEM9B-AS12rs56210063Chr11:8767618Multi
171SWAP708, TMEM41B5LOC4400282, SBF2-AS12rs4537761, rs360153Chr11:9301806-9740727BC, BP, DEUR
172CTR92MRVl12rs11042937Chr11:10723847EUR
173BMAL16, ARNTL2rs11316597Chr11:13274205BP, PSYEUR
174BDNF2, LIN7C2LINC006782rs6265Chr11:27658369ALC, BMI, BP, I, L, PSY, SMMulti
175WT14, IMMP1L2rs7118294Chr11:32358975BH, BP, LEUR
176HSD17B127, TTC171rs7116641Chr11:43675367BH, BMI, IEUR
177SIPA18, RNASEH2C3rs2306363Chr11:65638129ALC, BMI, BP, LEUR, JPN
178SERPINH117, MAP64AP001922.52rs590121, rs584961Chr11:75563105-75566583BH, BMIEUR
179ARHGAP4211, PGR1LOC1001283862rs633185, rs7947761Chr11:100722807-100753868ALC, BPEUR
180MMP132, MMP31rs1892971Chr11:102924877EUR
181PDGFD5, DYNC2H11rs2839812Chr11:103802566BMI, BPEUR, JPN
182CWF19L25, GUCY1A22rs7117780Chr11:107215397BPEUR
183RDX5, FDX14rs10488763Chr11:110373636EUR, JPN
184SIK27, CRYAB5rs11213945Chr11:111590279BPMulti
185ZPR13, BUD132rs964184Chr11:116778201LEUR, HISP
186VPS111, MCAM1rs1177562Chr11:119078621LEUR
187TLCD53, ARHGEF122rs4938809Chr11:120493228EUR
188UBASH3B6, JHY1rs57812455Chr11:122654259BC, BP, LEUR
189ST3GAL45, TIRAP2GSEC3rs10790800Chr11:126392743LEUR
190C1S4, CHD42rs72447384Chr12:7071137IEUR
191YBX36, OLR11rs2607903Chr12:10723974JPN
192PDE3A4, AEBP22rs10841443Chr12:20067099BPEUR
193ZCRB17, PPHLN17rs12820154Chr12:42389305BPMulti
194ZNF6414, CCDC1842rs1859440Chr12:48033546BC, BPEUR
195SMUG13, HOXC43FLJ128252, RP11-834C11.42rs1133773, rs75160195Chr12:54102435-54127810EUR, JPN
196COQ10A6, STAT24rs143405823Chr12:56329935BH, L, PSYMulti
197LRP17, STAT65rs11172113Chr12:57133500BH, BMI, BP, L, PSYEUR
198ATP2B15, GALNT43AC010201.22rs2681472Chr12:89615182ALC, BC, BMI, BP, PSYEUR, JPN
199FGD67, VEZT3rs11107903Chr12:95114195BCEUR, JPN
200CORO1C4, SELPLG1rs1558802Chr12:108642472L, PSYMulti
201ATXN24, SH2B32rs10774625, rs11066015Chr12:111472415-111730205ALC, BC, BMI, BP, I, L, PSY, SMEUR, JPN
202TBX34, TBX51rs34606058Chr12:114915563BC, BH, BPEUR, Multi
203KSR24, FBXW81rs11830157Chr12:117827636EUR
204HNF1A6, C12orf435RNU4-22, HNF1A-AS12rs2244608Chr12:120979185ALC, BC, I, L, PSYEUR
205ZNF6646, CCDC9211rs7133378Chr12:123924955BMI, D, L, PSY, SMEUR
206SCARB111, UBC2rs7485656, rs7296737Chr12:124831101-124852410I, LBLK, EUR
207ZNF2682, ZNF1402AC131212.32rs36127550Chr12:133203723BMI, BPMulti
208FLT15, SLC46A32rs17086617, rs74412485Chr13:28388549-28468295BH, BPEUR, JPN
209PDS5B8, N4BP2L25rs7991314Chr13:32551937BC, BH, BMI, SMEUR
210DOCK93, SLC15A11rs8000794Chr13:98782556EUR
211COL4A119, COL4A212rs11617955, rs3783113, rs11619113, rs4773141, rs9515203, rs7333991Chr13:110165755-110456089BP, C, LBLK, EUR, JPN
212F102, MCF2L1rs4907571Chr13:112964182BPEUR
213ARID4A2, ARMH42PSMA3-AS12rs2145598Chr14:58327283LEUR
214EIF2B27, MLH36rs10131894Chr14:74980176EUR
215ITPK14, ATXN32rs1956028Chr14:93040852BCMulti
216SERPINA14, DDX241rs112635299Chr14:94371805ALC, BH, BMI, BP, I, L, PSYEUR
217HHIPL111, CYP46A15AL160313.12rs36033161, rs2895811Chr14:99657150-99667605BPEUR, JPN
218EXD12, KNSTRN2OIP5-AS13rs3959554Chr15:41151726BMI, BPEUR
219NEDD43, PIGB3AC018926.12rs11633313Chr15:55843511Multi
220LIPC5, ALDH1A25HSP90AB4P2rs588136Chr15:58438299L, PSYEUR
221TRIP45, RBPMS23rs6494488Chr15:64732005LEUR
222SMAD37, SMAD63IQCH-AS12rs56062135Chr15:67163292EUR, HISP
223ADAMTS713, CTSH10AC090607.22rs7177201, rs7173743, rs112238647, rs7174727Chr15:78759363-78858944BH, BP,C, SMEUR, HISP, JPN
224CFAP1613, MESD2rs2683260Chr15:81093211EUR
225AKAP133, KLHL253LOC1019296792, AC044860.12rs7177107Chr15:85580133BCEUR
226MFGE85, ABHD24rs1807214Chr15:89022026BPEUR, JPN
227FES9, FURIN6rs7183988Chr15:90885359BP, L, PSYBLK, EUR, JPN
228NR2F22rs17581137Chr15:95603185EUR
229MYH115, NOMO12AC138969.12rs12691049Chr16:15815656AF, BPEUR
230FTO5, AKTIP1rs1421085Chr16:53767042ALC, BH, BMI, BP, D, I, L, PSY, SMBLK, EUR
231CETP6, HERPUD13rs12446515Chr16:56953103AF, BMI, BP, C, LEUR
232NOB13, NFAT52PDXDC2P3rs9302604Chr16:69542991BP, PSY, SMEUR
233DHODH7, DHX383rs12445401Chr16:72114520ALC, L, PSYEUR
234CFDP16, TMEM170A5AC009054.22rs8046696Chr16:75408245ALC, BC, BH, BP, L, SMEUR, JPN
235CMIP8, PLCG26AC009148.12rs10493891, rs7189462Chr16:81477137-81874262BP, LEUR
236CDH134, OSGIN11rs7500448Chr16:83012185BPEUR
237rs55880988Chr16:88479845L, IMulti
238SMG65, SRR3rs4790881Chr17:2165638LEUR
239TOM1L27, DRC37CCDC144BP2, USP32P22rs12936927Chr17:17823651ALC, BMI, PSY, SMEUR, HISP
240SSH28, CORO65SH3GL1P22rs11080107Chr17:29611406BH, BMIEUR
241COPRS2, NF11rs76954792Chr17:31706495BPEUR
242FBXL207, MED15rs1077715Chr17:39527295ALC, BC, L, SMEUR
243CAVIN18, DHX586NBR24, AC099811.53rs12952244, rs8068844, rs9912587Chr17:42118063-43021069BMI, D, I, LEUR, Multi
244ARHGAP275, GOSR25LINC022102, NSFP12rs5026246, rs1706731, rs1881193, rs1881194, rs2532235, rs2696671, rs17608766Chr17:45495530-46935905AF, BP, PSYEUR, HISP
245SNF810, ATP5MC110SUMO2P174, LOC1053718142rs46522, rs4643373, rs5820757Chr17:48911235-49340581ALC, BH, BMI, BP, I, L, PSYEUR
246BCAS34, PPM1D2RPL12P382rs11655024Chr17:61155004BMI, BPEUR, JPN
247PECAM15, ERN12AC046185.32rs11079536Chr17:64315043BC, BPEUR, JPN
248WIPI16, BPTF3rs2909217Chr17:68467844LEUR
249TRIM4710, UNC13D8ATF4P33rs2410859, rs78532451Chr17:75845204-75883011BP, LEUR, Multi
250rs112735431Chr17:80385145JPN
251CTAGE13, GATA63rs9951447Chr18:22429728EUR, JPN
252NPC14, RMC14rs1623003Chr18:23585199ALC, BP, L, SMEUR
253rs4327120Chr18:38953012SMMulti
254LIPG5, SMAD74AC022919.12rs9945890, rs12965923Chr18:48989546-49687312LEUR
255LMAN16, MC4R5rs11663411, rs476828Chr18:59293278-60185354ALC, BH, BMI, BP, D, I, L, PSY, SMEUR
256rs150651184Chr19:282148BLK
257DOT1L6, PLEKHJ15AC006130.32rs191615952Chr19:2236098BH, BPMulti
258KDM4B5, TICAM12rs12185519Chr19:4967728BH, BMI, LMulti
259ANGPTL46, MAP2K71rs116843064Chr19:8364439ALC, BMI, LEUR
260LDLR18, SMARCA46ZNF433-AS14, AC008770.32rs55997232, rs10422256, rs72658867, rs34774090, rs167479Chr19:11077441-11416089ALC, BC, BP, L, PSYBLK, EUR, HISP, JPN
261CYP4F22, EPS15L12rs77420750Chr19:15868934EUR
262KLF26, AP1M12rs10420373Chr19:16319866IJPN
263MYO9B6, HAUS85rs7246865Chr19:17108295BC, BMI, BPEUR
264MAP1S9, FCHO16rs10410487Chr19:17718799BC, BH, IEUR
265ELL2, ISYNA12rs78030362Chr19:18464383BC, BMI, BPEUR
266ZNF1007, ZNF4933rs8102320Chr19:21754083BPMulti
267ZNF5078, DPY19L31rs12976411Chr19:32391114EUR
268EIF3K2, ZFP302ZNF7815, LINC015352rs73025613Chr19:37843721Multi
269TGFB115, B9D26AC011462.53rs60315715, rs11466359, rs1800469Chr19:41284182-41354391BC, BPEUR, HISP, JPN
270APOE12, APOC18rs429358, rs7412, rs183657985Chr19:44908684-45239240BC, BH, BP, C, I, LBLK, EUR, JPN
271RSPH6A4, DMWD4PPP5D1P2, GEMIN7-AS12rs8108474Chr19:45798221BH, BP, LEUR
272RRBP16, DSTN3rs1132274Chr20:17615510BH, LEUR, Multi
273ITCH7, NCOA64FER1L42rs6088595Chr20:34770696BC, BH, BMI, D, I, L, SMEUR
274PROCR7, EDEM24NORAD2rs17406518Chr20:35211373BCEUR
275MAFB4rs2207132Chr20:40513876BMI, I, LEUR
276PLCG16, TOP14rs6102343Chr20:41295639BMI, LEUR
277PLTP3, CD403rs8124182Chr20:45980262LEUR
278PREX15, ARFGEF22RN7SL197P2rs2008614Chr20:48816613BPEUR
279rs4809766Chr20:49942802EUR
280GNAS3, ZNF8312APCDD1L-DT2, LINC017112rs6026739Chr20:59164414BH, BPEUR
281rs151206628Chr21:10592292HISP
282NRIP13, HSPA131rs2064040Chr21:15212021Multi
283MAP3K7CL5, BACH14LINC001893rs2832227Chr21:29160755EUR
284SLC5A36, MRPS63AP000318.22rs28451064, rs149487184Chr21:34221526-34233562BC, BMI, BPEUR
285ARVCF8, TANGO25DGCR112rs4819811, rs71313931Chr22:19621733-19972661BC, BP, IEUR
286SUSD27, GGT56POM121L9P3, GGTLC4P2rs12484557, rs5760309Chr22:24159893-24281863EUR
287OSM4, LIF3rs6006426Chr22:30273894EUR
288FBXO71rs137525Chr22:32900153Multi
289SCUBE13, TTLL122rs139012Chr22:43227966EUR
290PNPLA32, PRR52rs738408Chr22:43928850ALC, BC, LMulti
291TBL1Xrs5934659ChrX:9610064EUR
292OPHN11, AR1rs1410127ChrX:68060539Multi
293CYSLTR11, TAF9B1rs398484ChrX:78343972Multi
294VDAC1P1rs2066280ChrX:80922131EUR
295SETP4rs2342572ChrX:84814364Multi
296CHRDL11, RGAG11rs7884019ChrX:110566261EUR
297MAP7D31, FHL11rs5929743ChrX:136236818EUR
298ARHGEF61RP11-308D16.21rs5975828ChrX:136904390EUR
299DNASE1L11, ATP6AP11rs147967693ChrX:154410919Multi
Locus IDGenes (protein)Genes (RNA)Index rsIDsCoordinates (hg38)TraitsEthnicity
1SKI4, MORN13rs2843152Chr1:2314131LEUR
2PRDM167, ACTRT22rs7413494, rs2493298Chr1:3069321-3409348BPEUR
3DHDDS7, RPS6KA13DHDDS-AS12rs12046497Chr1:26521149BH, LMulti
4ARID1A7, KDF12LOC1019287282rs79598313Chr1:26958422ALC, BH, BP, I, LEUR
5FHL37, INPP5B6rs61776719Chr1:37995647BH, BMI, BPEUR
6ZMYND125, FOXO64rs12047439, rs2152314Chr1:41343968-42480791L, BPMulti
7PCSK916, USP244rs34232196, rs11591147, rs151193009, rs472495Chr1:55023869-55055640ALC, BC, L, PSYEUR, JPN
8PLPP310, FGGY8LINC013584, AC093425.12rs11206803, rs56170783, rs71646019, rs12733512Chr1:56411837-59181306BH, BMI, BP, SMEUR, HISP, JPN, Multi
9PSRC18, CELSR26rs12740374, rs655246Chr1:109274968-109289661ALC, BC, BH, BP, I, L, PSYBLK, EUR, HISP
10PHTF13, MAGI32rs1230666Chr1:113630788EUR
11NGF8, TSPAN22rs11806316, rs61797068Chr1:115210861-115359893EUR
12ECM16, MTMR115ADAMTSL4-AS12, AL356356.12rs67807996, rs11585169Chr1:150023307-150599561BH, BMI, BP, I, SMEUR
13TDRKH9, RIIAD13TDRKH-AS13rs11810571Chr1:151789832PSYEUR
14IL6R5, TPM32rs6686750Chr1:154447367IEUR
15NME79, ATP1B15rs61806987Chr1:169345595BHEUR
16KIAA00405, TNN1rs4650716Chr1:175159575EUR
17DENND1B4, CRB12rs12022672Chr1:197618876SMMulti
18DDX597, CAMSAP24DDX59-AS12rs6700559Chr1:200676945EUR
19LMOD17, IPO94IPO9-AS12rs2820315Chr1:201903136BH, BMI, BP, L, PSYEUR
20DSTYK3, NUAK23AC119673.22rs12048743Chr1:205145745LMulti
21HHAT7, SYT142RNU5A-8P2rs60154123Chr1:210295654EUR
22MIA36, AIDA4MIA3-AS12rs17163363Chr1:222655362BPEUR, HISP, JPN
23AGT5, COG21rs699Chr1:230710048BPEUR
24COLEC112RNASEH1-DT3rs56236159Chr2:3588888BC, BP, I, LMulti
25IAH13, ADAM173rs2715879Chr2:9375422EUR
26OSR13, TTC322rs16986953Chr2:19742712EUR
27APOB5, TDRD152rs13306206, rs515135Chr2:21019859-21063185BC, L, PSYEUR, JPN
28ABCG810, ABCG56rs4245791, rs76866386Chr2:43847292-43848344BC, I, L, PSYEUR
29PRKCE7, SRBD11rs582384Chr2:45669298BPEUR
30BCL11A4, REL1MIR4432HG2rs243071Chr2:60391893EUR
31GFPT15, NFU13rs4346430Chr2:69441670Multi
32GGCX7, VAMP86PARTICL2rs10176176Chr2:85534925BMI, LEUR, JPN
33IL1F105, PSD43rs6759676Chr2:113078771BP, IEUR
34SAP1305, WDR331rs114192718Chr2:128028089EUR
35ARHGAP155, KYNU1rs4662330Chr2:143428906BPEUR
36ZEB212, GTDC13LINC014123, AC009951.42rs6740731, rs17408036, rs10928241Chr2:144513025-145073861BP, SMEUR, HISP
37ACVR2A4, MBD52rs35611688Chr2:147620292EUR
38FIGN5, GRB141rs10930115Chr2:164073872BP, PSY, SMEUR, JPN
39TFPI4, CALCRL3rs840616Chr2:187331742BMI, BP, LEUR
40NBEAL17, CARF7rs148812085Chr2:203012510BMI, BP, L, PSY, SMEUR, HISP
41FN17, ATIC2rs1250247Chr2:215434906BH, BMI, BP, LEUR
42TNS15, TMBIM12rs2161967Chr2:217815806BP, LEUR, HISP
43IRS15, NYAP22rs952227Chr2:226197364ALC, BMI, BP, D, L, SMEUR
44PID15, DNER3rs4140748Chr2:229140789LEUR, JPN
45GIGYF27, SNORC4rs283485Chr2:232780981BH, BMIEUR
46COL6A34, RBM441rs11677932Chr2:237315312BPEUR
47FGD55, NR2C21rs34991912Chr3:14884844BH, BPEUR, JPN
48ZNF5897, CDC25A6AC134772.12rs7633770, rs7617773Chr3:46647072-48152025BH, BPEUR
49IP6K23, IHO13AC121247.12rs34759087Chr3:49124851BH, BMI, PSYEUR
50ITIH43, NISCH2rs77347777Chr3:52814191BMI, BPEUR
51ITGB55, UMPS4rs17843797Chr3:124734175BMIEUR
52DNAJC135, NPHP34rs10512861Chr3:132539117I, LEUR
53PCCB7, PPP2R3A5NCK1-DT3rs34330586Chr3:136081567BMI, I, LEUR
54MRAS5, PIK3CB3rs185244Chr3:138374047BMI, BP, LEUR
55ATP1B34, PLS12rs7622417Chr3:141907157BMI, LMulti
56ARHGEF268, DHX367ARHGEF26-AS13rs357494Chr3:154219964BMI, BP, LEUR, HISP
57CCNL14, TIPARP4rs4266144Chr3:157134803BH, BMIEUR
58MECOM2, SEC621rs16853198Chr3:169122391BPMulti
59FNDC3B2, ECT21rs34229028Chr3:172399666EUR
60rs73070813Chr3:187168807EUR
61HGFAC2rs16844401Chr4:3447925BC, BH, LEUR
62GNPDA21rs10938398Chr4:45184122BMI, I, LMulti
63FIP1L12, LNX11rs17083333Chr4:53705899EUR
64REST9, SPINK22rs781663Chr4:56915588BC, BH, I, LEUR, JPN
65SHROOM35, CCDC1582rs12500824Chr4:76495474L, BPEUR
66ANTXR22, PRDM81rs10857147Chr4:80259918L, BPEUR, HISP
67RASGEF1B4, PRKG21rs36002015Chr4:81704567EUR
68UNC5C2, BMPR1B2rs3775058Chr4:95196220EUR
69MAD2L15, PDE5A4rs7678555Chr4:119988346BPEUR
70PCDH182rs7439567Chr4:137543688BPMulti
71ZNF8275, MMAA1rs13124853Chr4:145863622BP, LEUR
72EDNRA14, ARHGAP103AC093908.12rs13120678, rs1878406, rs6841581Chr4:147352245-147480038BC, BPEUR, JPN
73GUCY1A110, MAP92RP11-588K22.22rs7440763, rs3796587Chr4:155512368-155716921ALC, BP, LEUR, HISP, JPN
74PALLD4, DDX60L1rs869396Chr4:168766849BPEUR
75IRX13rs10041378Chr5:4094052JPN
76SEMA5A7, TAS2R11SNHG185rs17263917Chr5:9552226BCEUR
77BASP12rs1032763Chr5:17118821Multi
78ITGA15, PELO1rs4074793Chr5:52897294L, IEUR, Multi
79ARL152, HSPB31AC027329.12rs7719168Chr5:53996560BP, LEUR
80MAP3K14, IL6ST2rs62362364, rs3936510Chr5:56145744-56565039BMI, BP, L, SMEUR
81ANKDD1B7, HMGCR6rs12916Chr5:75360714BC, BMI, L, PSYEUR
82LNPEP7, ERAP27AC009126.12rs27660Chr5:97012071BP, I, L, PSYMulti
83FER11, FBXL174LINC010233rs288173, rs112949822Chr5:108016593-108749489BH, BMI, BP, IEUR, Multi
84NREP1, WDR361rs256277Chr5:112071113Multi
85DMXL12, TNFAIP81rs13169691Chr5:119112584EUR
86SRFBP15, LOX3AC008568.12rs4345341Chr5:121943056BPEUR
87PRDM63, SNX241rs73796819Chr5:123084735Multi
88FBN28, SLC27A62rs6883598Chr5:128590497BPEUR
89IRF14, RAD504rs10477741, rs2706399Chr5:132459618-132532010LEUR
90FGF16, SPRY42rs249760, rs3776307Chr5:142536127-143114600LEUR
91SGCD4, MED72rs39929Chr5:156696640L, BPMulti
92ADAM195, FNDC91rs11465228Chr5:157575687Multi
93FOXC15, GMDS3rs72836800Chr6:1617092BHEUR
94BLOC1S51, TXNDC51rs6597292Chr6:7975026Multi
95PHACTR16, GFOD12rs9349379Chr6:12903725ALC, BC, BP, CEUR, HISP, JPN
96HDGFL14, PRL1rs6909752Chr6:22612400AFEUR
97HLA-A4, HLA-G3HLA-F-AS15, HLA-H3rs29266Chr6:29607502LEUR
98MICA4, PPP1R104rs139141104, rs9266631Chr6:31021244-31379121LEUR, JPN
99CLIC13, DDAH23SNHG322, LOC1005075472rs3130683Chr6:31920590BH, BMI, BP, L, PSYEUR
100LEMD23, UQCC23rs62397561Chr6:33816328Multi
101BLTP3A9, SNRPC8ILRUN-AS12rs9469899, rs17609940Chr6:34825347-35067023BH, BMI, L, PSYEUR
102CDKN1A5, ETV72DINOL2rs1321309Chr6:36670859BP, I, LEUR
103KCNK510, SAYSD11rs733701, rs10947789Chr6:39204086-39207146BPEUR
104PEX63, PTK71rs1034246Chr6:43100632EUR
105VEGFA4, MRPS18A1rs6905288, rs149372871Chr6:43791136-44080314ALC, BMI, BP, L, PSYEUR, HISP, JPN
106RAB2310, PRIM26LOC1005061884, RP11-203B9.42rs11752218, rs9367716Chr6:57280764-57295774EUR
107CD1096CD109-AS12rs79717953, rs56171536Chr6:73695048-73706145JPN, Multi
108TENT5A4, IBTK1LINC0254`22rs9361867Chr6:81886242EUR
109UFL16, FHL55rs2983896Chr6:96581995BPEUR
110CENPW8, TRMT112rs35510806Chr6:126357186BH, I, L, PSYEUR
111TCF2113, SLC2A127TARID3rs6919211, rs2327426, rs2492304Chr6:133678730-134057013BH, BPEUR, HISP, JPN
112PLEKHG14, MTHFD1L2RAET1K2rs17080093Chr6:150676304BPEUR
113PLG29, LPA19LPAL22rs6932293, rs186696265, rs56195640, rs192425087, rs28867400, rs932631509, rs10455872, rs73596816, rs79018195, rs1998043, rs4252120, rs184278183Chr6:160114846-160756724BC, BMI, BP, C, L, PSYBLK, EUR, HISP, JPN
114MAD1L16, ELFN12rs62435159Chr7:1871645BMIEUR
115DAGLB8, RAC17rs10951983Chr7:6406396I, LEUR
116TMEM106B7, THSD7A2rs11509880Chr7:12222285L, PSYEUR
117ETV14rs2073533Chr7:13990114EUR
118TWIST15, HDAC92rs2107595Chr7:19009765BPEUR, JPN
119MACC12, ITGB82rs10486389Chr7:20260793EUR
120TBX208, DPY19L12DPY19L2P12rs2215614Chr7:35237481BHEUR
121CCM25, TBRG41rs2107732Chr7:45038379BPEUR
122SEMA3C5rs917191Chr7:80941555BMIMulti
123ZKSCAN16, AP4M15STAG3L5P2rs35146811Chr7:100123371BH, BP, LEUR
124COG59, BCAP298WBP1LP23, RPL7P322rs12112877, rs10953541Chr7:107300879-107604100L, PSY, SMEUR
125CFTR3, ASZ12rs13222797Chr7:117459992BMI, LEUR
126ZC3HC15, KLHDC102rs11556924Chr7:130023656BC, BP, I, L, PSY, SMEUR
127PARP122, HIPK21rs5887949Chr7:140060741BHEUR
128NOS35, KCNH21rs3918226Chr7:150993088ALC, BC, BP, L, SMEUR
129MSR13, CNOT71rs1480146Chr8:16272064Multi
130NAT23, PCM13rs4646249Chr8:18402921LEUR
131LPL14, CSGALNACT13rs894211, rs66778572, rs268Chr8:19956018-20058609ALC, BC, BH, BMI, BP, I, L, PSY, SMBLK, EUR, HISP
132BMP15, PHYHIP2rs56408342Chr8:22190977EUR
133DOCK56, KCTD92rs1510758Chr8:25204291EUR
134PPP2R2A2rs6557894Chr8:26229397BHEUR
135RP15rs9298506Chr8:54524964ALC, BH, I, LMulti
136C8orf342rs2380472Chr8:68519476JPN
137GEM6, CDH172rs34917849Chr8:94266079BPEUR
138NDUFAF65, TP53INP11rs3019173Chr8:95008746Multi
139rs10093110Chr8:105553186EUR
140TRIB14, NSMCE21rs2001846Chr8:125466208ALC, BMI, BP, D, I, LEUR, HISP
141NFIB2, MPDZ1LURAP1L-AS12rs10961206Chr9:13724052EUR
142ACER27, RPS61AL391834.12rs10811183Chr9:19436057LEUR
143CDKN2A13, CDKN2B11ERVFRD-36, MIR31HG4rs11523031, rs2891168, rs6475608, rs76959412Chr9:21843843-22101703BC, BP, C, LBLK, EUR, HISP, JPN
144WNK23, CARD192rs4617217Chr9:93226686Multi
145ABCA12, NIPSNAP3B2rs35093463Chr9:104823957LJPN
146KLF44, RAD23B1rs1967604Chr9:107768043BC, LEUR
147SVEP14rs111245230Chr9:110407495BC, BPEUR
148ASTN22rs7873551Chr9:116482848BH, PSYMulti
149PHF195, C54rs41312891Chr9:120964472BHEUR, Multi
150DAB2IP5, STOM1CUTALP2rs885150Chr9:121657894BC, BH, BMI, LEUR
151ABO6, CEL3rs651007Chr9:133278431BC, BP, D, I, L, PSYBLK, EUR, HISP
152CAMK1D4, CDC1232rs17566555Chr10:12233948PSYEUR
153ARHGAP214, GPR1581rs7077962Chr10:24765745Multi
154JCAD7, SVIL1rs9337951Chr10:30028144BP, SMEUR, HISP
155ZEB16, ARHGAP121ZEB1-AS15, PPIAP312rs161231Chr10:31466991LMulti
156CXCL1212, RASGEF1A2FRG1JP2rs1870634, rs494207, rs527052Chr10:43985363-44245808CBLK, EUR, HISP
157BICC17, TFAM1rs10740732Chr10:58593128BPMulti
158TSPAN147, SH2D4B2LOC1019295742rs17680741Chr10:80491758EUR
159LIPA6, IFIT11rs1051338Chr10:89247603I, LEUR, JPN
160PLCE112, SLC35G12rs1223583, rs55753709Chr10:93996743-94269413BMI, BP, L, PSYEUR
161LOXL49, R3HCC1L3rs884811Chr10:98164006BH, BPEUR
162CNNM28, BORCS75rs77787671Chr10:103016448BMI, BP, PSYEUR, HISP, JPN
163STN13, SH3PXD2A2rs2067831Chr10:103883465BP, SMEUR
164TCF7L25rs7903146Chr10:112998590BH, BMI, BP, D, L, SMMulti
165C10orf823, GFRA11rs2218584Chr10:116649131LMulti
166WDR111rs17101521Chr10:121156039BMI, BP, LMulti
167HTRA16, TACC22rs2672592, rs4752700, rs17103659Chr10:122471234-122515087EUR, HISP
168BET1L3, PSMD132rs73386640Chr11:203235JPN
169TRIM54, TRIM221rs11601507Chr11:5679844BC, LEUR
170DENND2B2, TRIM662LOC1027247842, TMEM9B-AS12rs56210063Chr11:8767618Multi
171SWAP708, TMEM41B5LOC4400282, SBF2-AS12rs4537761, rs360153Chr11:9301806-9740727BC, BP, DEUR
172CTR92MRVl12rs11042937Chr11:10723847EUR
173BMAL16, ARNTL2rs11316597Chr11:13274205BP, PSYEUR
174BDNF2, LIN7C2LINC006782rs6265Chr11:27658369ALC, BMI, BP, I, L, PSY, SMMulti
175WT14, IMMP1L2rs7118294Chr11:32358975BH, BP, LEUR
176HSD17B127, TTC171rs7116641Chr11:43675367BH, BMI, IEUR
177SIPA18, RNASEH2C3rs2306363Chr11:65638129ALC, BMI, BP, LEUR, JPN
178SERPINH117, MAP64AP001922.52rs590121, rs584961Chr11:75563105-75566583BH, BMIEUR
179ARHGAP4211, PGR1LOC1001283862rs633185, rs7947761Chr11:100722807-100753868ALC, BPEUR
180MMP132, MMP31rs1892971Chr11:102924877EUR
181PDGFD5, DYNC2H11rs2839812Chr11:103802566BMI, BPEUR, JPN
182CWF19L25, GUCY1A22rs7117780Chr11:107215397BPEUR
183RDX5, FDX14rs10488763Chr11:110373636EUR, JPN
184SIK27, CRYAB5rs11213945Chr11:111590279BPMulti
185ZPR13, BUD132rs964184Chr11:116778201LEUR, HISP
186VPS111, MCAM1rs1177562Chr11:119078621LEUR
187TLCD53, ARHGEF122rs4938809Chr11:120493228EUR
188UBASH3B6, JHY1rs57812455Chr11:122654259BC, BP, LEUR
189ST3GAL45, TIRAP2GSEC3rs10790800Chr11:126392743LEUR
190C1S4, CHD42rs72447384Chr12:7071137IEUR
191YBX36, OLR11rs2607903Chr12:10723974JPN
192PDE3A4, AEBP22rs10841443Chr12:20067099BPEUR
193ZCRB17, PPHLN17rs12820154Chr12:42389305BPMulti
194ZNF6414, CCDC1842rs1859440Chr12:48033546BC, BPEUR
195SMUG13, HOXC43FLJ128252, RP11-834C11.42rs1133773, rs75160195Chr12:54102435-54127810EUR, JPN
196COQ10A6, STAT24rs143405823Chr12:56329935BH, L, PSYMulti
197LRP17, STAT65rs11172113Chr12:57133500BH, BMI, BP, L, PSYEUR
198ATP2B15, GALNT43AC010201.22rs2681472Chr12:89615182ALC, BC, BMI, BP, PSYEUR, JPN
199FGD67, VEZT3rs11107903Chr12:95114195BCEUR, JPN
200CORO1C4, SELPLG1rs1558802Chr12:108642472L, PSYMulti
201ATXN24, SH2B32rs10774625, rs11066015Chr12:111472415-111730205ALC, BC, BMI, BP, I, L, PSY, SMEUR, JPN
202TBX34, TBX51rs34606058Chr12:114915563BC, BH, BPEUR, Multi
203KSR24, FBXW81rs11830157Chr12:117827636EUR
204HNF1A6, C12orf435RNU4-22, HNF1A-AS12rs2244608Chr12:120979185ALC, BC, I, L, PSYEUR
205ZNF6646, CCDC9211rs7133378Chr12:123924955BMI, D, L, PSY, SMEUR
206SCARB111, UBC2rs7485656, rs7296737Chr12:124831101-124852410I, LBLK, EUR
207ZNF2682, ZNF1402AC131212.32rs36127550Chr12:133203723BMI, BPMulti
208FLT15, SLC46A32rs17086617, rs74412485Chr13:28388549-28468295BH, BPEUR, JPN
209PDS5B8, N4BP2L25rs7991314Chr13:32551937BC, BH, BMI, SMEUR
210DOCK93, SLC15A11rs8000794Chr13:98782556EUR
211COL4A119, COL4A212rs11617955, rs3783113, rs11619113, rs4773141, rs9515203, rs7333991Chr13:110165755-110456089BP, C, LBLK, EUR, JPN
212F102, MCF2L1rs4907571Chr13:112964182BPEUR
213ARID4A2, ARMH42PSMA3-AS12rs2145598Chr14:58327283LEUR
214EIF2B27, MLH36rs10131894Chr14:74980176EUR
215ITPK14, ATXN32rs1956028Chr14:93040852BCMulti
216SERPINA14, DDX241rs112635299Chr14:94371805ALC, BH, BMI, BP, I, L, PSYEUR
217HHIPL111, CYP46A15AL160313.12rs36033161, rs2895811Chr14:99657150-99667605BPEUR, JPN
218EXD12, KNSTRN2OIP5-AS13rs3959554Chr15:41151726BMI, BPEUR
219NEDD43, PIGB3AC018926.12rs11633313Chr15:55843511Multi
220LIPC5, ALDH1A25HSP90AB4P2rs588136Chr15:58438299L, PSYEUR
221TRIP45, RBPMS23rs6494488Chr15:64732005LEUR
222SMAD37, SMAD63IQCH-AS12rs56062135Chr15:67163292EUR, HISP
223ADAMTS713, CTSH10AC090607.22rs7177201, rs7173743, rs112238647, rs7174727Chr15:78759363-78858944BH, BP,C, SMEUR, HISP, JPN
224CFAP1613, MESD2rs2683260Chr15:81093211EUR
225AKAP133, KLHL253LOC1019296792, AC044860.12rs7177107Chr15:85580133BCEUR
226MFGE85, ABHD24rs1807214Chr15:89022026BPEUR, JPN
227FES9, FURIN6rs7183988Chr15:90885359BP, L, PSYBLK, EUR, JPN
228NR2F22rs17581137Chr15:95603185EUR
229MYH115, NOMO12AC138969.12rs12691049Chr16:15815656AF, BPEUR
230FTO5, AKTIP1rs1421085Chr16:53767042ALC, BH, BMI, BP, D, I, L, PSY, SMBLK, EUR
231CETP6, HERPUD13rs12446515Chr16:56953103AF, BMI, BP, C, LEUR
232NOB13, NFAT52PDXDC2P3rs9302604Chr16:69542991BP, PSY, SMEUR
233DHODH7, DHX383rs12445401Chr16:72114520ALC, L, PSYEUR
234CFDP16, TMEM170A5AC009054.22rs8046696Chr16:75408245ALC, BC, BH, BP, L, SMEUR, JPN
235CMIP8, PLCG26AC009148.12rs10493891, rs7189462Chr16:81477137-81874262BP, LEUR
236CDH134, OSGIN11rs7500448Chr16:83012185BPEUR
237rs55880988Chr16:88479845L, IMulti
238SMG65, SRR3rs4790881Chr17:2165638LEUR
239TOM1L27, DRC37CCDC144BP2, USP32P22rs12936927Chr17:17823651ALC, BMI, PSY, SMEUR, HISP
240SSH28, CORO65SH3GL1P22rs11080107Chr17:29611406BH, BMIEUR
241COPRS2, NF11rs76954792Chr17:31706495BPEUR
242FBXL207, MED15rs1077715Chr17:39527295ALC, BC, L, SMEUR
243CAVIN18, DHX586NBR24, AC099811.53rs12952244, rs8068844, rs9912587Chr17:42118063-43021069BMI, D, I, LEUR, Multi
244ARHGAP275, GOSR25LINC022102, NSFP12rs5026246, rs1706731, rs1881193, rs1881194, rs2532235, rs2696671, rs17608766Chr17:45495530-46935905AF, BP, PSYEUR, HISP
245SNF810, ATP5MC110SUMO2P174, LOC1053718142rs46522, rs4643373, rs5820757Chr17:48911235-49340581ALC, BH, BMI, BP, I, L, PSYEUR
246BCAS34, PPM1D2RPL12P382rs11655024Chr17:61155004BMI, BPEUR, JPN
247PECAM15, ERN12AC046185.32rs11079536Chr17:64315043BC, BPEUR, JPN
248WIPI16, BPTF3rs2909217Chr17:68467844LEUR
249TRIM4710, UNC13D8ATF4P33rs2410859, rs78532451Chr17:75845204-75883011BP, LEUR, Multi
250rs112735431Chr17:80385145JPN
251CTAGE13, GATA63rs9951447Chr18:22429728EUR, JPN
252NPC14, RMC14rs1623003Chr18:23585199ALC, BP, L, SMEUR
253rs4327120Chr18:38953012SMMulti
254LIPG5, SMAD74AC022919.12rs9945890, rs12965923Chr18:48989546-49687312LEUR
255LMAN16, MC4R5rs11663411, rs476828Chr18:59293278-60185354ALC, BH, BMI, BP, D, I, L, PSY, SMEUR
256rs150651184Chr19:282148BLK
257DOT1L6, PLEKHJ15AC006130.32rs191615952Chr19:2236098BH, BPMulti
258KDM4B5, TICAM12rs12185519Chr19:4967728BH, BMI, LMulti
259ANGPTL46, MAP2K71rs116843064Chr19:8364439ALC, BMI, LEUR
260LDLR18, SMARCA46ZNF433-AS14, AC008770.32rs55997232, rs10422256, rs72658867, rs34774090, rs167479Chr19:11077441-11416089ALC, BC, BP, L, PSYBLK, EUR, HISP, JPN
261CYP4F22, EPS15L12rs77420750Chr19:15868934EUR
262KLF26, AP1M12rs10420373Chr19:16319866IJPN
263MYO9B6, HAUS85rs7246865Chr19:17108295BC, BMI, BPEUR
264MAP1S9, FCHO16rs10410487Chr19:17718799BC, BH, IEUR
265ELL2, ISYNA12rs78030362Chr19:18464383BC, BMI, BPEUR
266ZNF1007, ZNF4933rs8102320Chr19:21754083BPMulti
267ZNF5078, DPY19L31rs12976411Chr19:32391114EUR
268EIF3K2, ZFP302ZNF7815, LINC015352rs73025613Chr19:37843721Multi
269TGFB115, B9D26AC011462.53rs60315715, rs11466359, rs1800469Chr19:41284182-41354391BC, BPEUR, HISP, JPN
270APOE12, APOC18rs429358, rs7412, rs183657985Chr19:44908684-45239240BC, BH, BP, C, I, LBLK, EUR, JPN
271RSPH6A4, DMWD4PPP5D1P2, GEMIN7-AS12rs8108474Chr19:45798221BH, BP, LEUR
272RRBP16, DSTN3rs1132274Chr20:17615510BH, LEUR, Multi
273ITCH7, NCOA64FER1L42rs6088595Chr20:34770696BC, BH, BMI, D, I, L, SMEUR
274PROCR7, EDEM24NORAD2rs17406518Chr20:35211373BCEUR
275MAFB4rs2207132Chr20:40513876BMI, I, LEUR
276PLCG16, TOP14rs6102343Chr20:41295639BMI, LEUR
277PLTP3, CD403rs8124182Chr20:45980262LEUR
278PREX15, ARFGEF22RN7SL197P2rs2008614Chr20:48816613BPEUR
279rs4809766Chr20:49942802EUR
280GNAS3, ZNF8312APCDD1L-DT2, LINC017112rs6026739Chr20:59164414BH, BPEUR
281rs151206628Chr21:10592292HISP
282NRIP13, HSPA131rs2064040Chr21:15212021Multi
283MAP3K7CL5, BACH14LINC001893rs2832227Chr21:29160755EUR
284SLC5A36, MRPS63AP000318.22rs28451064, rs149487184Chr21:34221526-34233562BC, BMI, BPEUR
285ARVCF8, TANGO25DGCR112rs4819811, rs71313931Chr22:19621733-19972661BC, BP, IEUR
286SUSD27, GGT56POM121L9P3, GGTLC4P2rs12484557, rs5760309Chr22:24159893-24281863EUR
287OSM4, LIF3rs6006426Chr22:30273894EUR
288FBXO71rs137525Chr22:32900153Multi
289SCUBE13, TTLL122rs139012Chr22:43227966EUR
290PNPLA32, PRR52rs738408Chr22:43928850ALC, BC, LMulti
291TBL1Xrs5934659ChrX:9610064EUR
292OPHN11, AR1rs1410127ChrX:68060539Multi
293CYSLTR11, TAF9B1rs398484ChrX:78343972Multi
294VDAC1P1rs2066280ChrX:80922131EUR
295SETP4rs2342572ChrX:84814364Multi
296CHRDL11, RGAG11rs7884019ChrX:110566261EUR
297MAP7D31, FHL11rs5929743ChrX:136236818EUR
298ARHGEF61RP11-308D16.21rs5975828ChrX:136904390EUR
299DNASE1L11, ATP6AP11rs147967693ChrX:154410919Multi

In total, 393 independent CAD associations were collapsed into 290 autosomal and 9 X-linked genetic loci (locus ID) based on the proximal or most likely causal gene(s), including protein and RNA coding genes. The internal confidence score (cs) for causality is displayed as a superscript number [max. score = 29 for plasminogen (PLG)]. The column ‘index rsIDs' includes independent CAD associations within one gene region. Additional associations for CAD risk factors are shown in column ‘Traits’, including lipids (L), body mass index (BMI), body height (BH), blood pressure (BP), inflammation (I), calcification (C), blood coagulation (BC), diabetes (D), alcohol intake (ALC), smoking (SM), and psychological factors (e.g. sleep) (PSY). The last column shows the main ethnic groups for which CAD risk variants were identified (EUR = European, JPN = Japanese, HISP = Hispanic, BLK = black/African American, and Multi = mixed cohort).

2. Genetic architecture of CAD

2.1 Deciphering the molecular mechanisms of CAD risk variant

Determining the genetic architecture of CAD has proven to be a significant step in understanding disease aetiology and developing new treatment strategies for at-risk individuals. However, deciphering the precise mechanisms of disease-associated variants is always challenging and requires an integrative approach using bioinformatics tools and in vitro models. Figure 2 provides an overview of variant consequences (from Ensembl release 11018) for all 393 index variants and ∼18 500 additional variants in high linkage disequilibrium (LD) (r2 > 0.6). Most CAD-associated variants are in intronic regions and about 57% of these intronic variants reside in cis-regulatory elements (CREs) [e.g. transcription factor (TF) binding sites], indicating that a high proportion of these variants are indeed regulatory and modulate gene expression in a context-specific manner. It is believed that not only one single variant within one locus is linked to disease risk, but rather orchestrated effects of numerous variants can contribute to changes in transcript and protein levels.19–21 In theory, every step of the gene expression machinery can be affected by disease-associated variants, including genome organization (e.g. chromatin state), mRNA processing (e.g. transport or alternative splicing), and protein biosynthesis (e.g. protein modifications) (Figure 2). Examples of molecular mechanisms of CAD risk variants and affected genes (e.g. APOB, SH2B3, LPP, SORT1, FES, FURIN, and GUCY1A1) can be found in these excellent reviews16,17 and studies.22–24 Further examples (EDN1, PLPP3, HDAC9, LMOD1, SMAD3, LIPA, etc.) and a description of experimental methods can be found in this review by Rodriguez et al.17 and in Table 2.

Overview of possible consequences of CAD risk variants. Variant types (top right): about 95% of all ∼18 500 variants in LD with 393 proxy CAD-associated variants (r2 > 0.6) are in the non-coding region. About 60% of all CAD-associated variants in LD have regulatory potential as they either overlap with CREs from ENCODE/SCREEN,25 with VEP enhancer elements (Ensembl Variant Effect Predictor18) rank high in the RegulomeDB (ranking ≤ 2a or probability score > 0.8),26 or have a high score in other data sets (ABC score > 0.04 or Open Targets Genetics score > 0.7). Variant consequences (top right): most variants are in introns and about 56.7% of these intronic variants may show regulatory potential by altering enhancer activity or by impacting mRNA splicing (splice variants). Variant consequences are from the Ensembl VEP.18 Variant mechanisms (bottom left): CAD risk variant can affect gene expression (transcription or translation) as well as protein function. Examples of molecular mechanisms of genes in grey boxes are described in Table 2. CAD risk factors (bottom right): the combination of risk variants can ultimately impact CAD causing molecular risk factors such as LDL cholesterol, which are often associated with clinical risk factors such as obesity. The complete list of causal traits, biomarkers, and diseases derived from Mendelian randomization studies can be found in a review article by Chen and Schunkert.27
Figure 2

Overview of possible consequences of CAD risk variants. Variant types (top right): about 95% of all ∼18 500 variants in LD with 393 proxy CAD-associated variants (r2 > 0.6) are in the non-coding region. About 60% of all CAD-associated variants in LD have regulatory potential as they either overlap with CREs from ENCODE/SCREEN,25 with VEP enhancer elements (Ensembl Variant Effect Predictor18) rank high in the RegulomeDB (ranking ≤ 2a or probability score > 0.8),26 or have a high score in other data sets (ABC score > 0.04 or Open Targets Genetics score > 0.7). Variant consequences (top right): most variants are in introns and about 56.7% of these intronic variants may show regulatory potential by altering enhancer activity or by impacting mRNA splicing (splice variants). Variant consequences are from the Ensembl VEP.18 Variant mechanisms (bottom left): CAD risk variant can affect gene expression (transcription or translation) as well as protein function. Examples of molecular mechanisms of genes in grey boxes are described in Table 2. CAD risk factors (bottom right): the combination of risk variants can ultimately impact CAD causing molecular risk factors such as LDL cholesterol, which are often associated with clinical risk factors such as obesity. The complete list of causal traits, biomarkers, and diseases derived from Mendelian randomization studies can be found in a review article by Chen and Schunkert.27

Table 2

Exemplary list of variant consequences and detection methods

LevelRegulatory featureAnalysisDescriptionExample of CAD-associated genes
GenomeChromatin stateATAC-seq or DNase-seqBoth sequencing techniques allow for the detection of accessible chromatin, a prerequisite for active regulation of gene expression. Variants that affect chromatin accessibility are called caQTLs.The caQTL variant rs2692224 located downstream of the FN1 gene was identified using ATAC-seq in human coronary artery SMCs28
Enhancer/TF binding sitesChIP-seq, CRISPR-Cas perturbationChromatin immunoprecipitation (ChIP) is combined with DNA-seq. DNA and proteins (histones or TFs) are crosslinked. Fragmented protein-bound DNA is captured using antibodies and sequenced. Variants that alter TF binding are called bQTLs. CREs can be confirmed using CRISPR-Cas perturbation experiments.17By combining DNase-seq and histone ChIP-seq data, Turner et al. identified a protective T allele of rs17293632 that disrupts an activator protein-1 site in a SMAD3 intron enhancer, resulting in reduced SMAD3 expression.29 Toropainen et al. also identified this variant in ECs.30
Chromatin loopingHi-C-seqHi-C-seq combines DNA proximity ligation with high-throughput sequencing in a genome-wide fashion to identify interacting regulatory features such as enhancers and promotors. Variants that affect chromatin looping are called clQTLs.The caQTL variant rs2692224 in the FN1 locus has also been described to alter chromatin looping in human coronary artery SMCs28
RNARNA leveleQTL, reporter assaysVariants that impact transcript level or gene expression (e) are called eQTLs. To detect eQTLs, genotyping and RNA sequencing are combined followed by association tests. Allele specific activity can be confirmed by reporter assay such as MPRA or STARR-seq.17About 85% of CAD loci contain eQTLs (see Supplementary material online, Table S1). The SMAD3 variant rs17293632 is one example in which the eQTL can be explained by the modulation of a TF binding site. However, eQTLs are often cell type and context-specific, i.e. only detectable after adding a certain stimulus.
UTR variantsmRNA stability/miRNA binding, etc.UTR variants can have a variety of functional consequences such as altering the secondary structure, stability, location, translation, or binding of microRNAs or RNA-binding proteins. There are bioinformatics tools to predict mRNA stability or binding of microRNAs (e.g. https://mirdb.org/).Two CAD-associated variants (rs9818870 and rs40593) are located in the 3′-UTR of the MRAS gene, adjacent to a cluster of miRNA binding sites, thereby most likely affecting mRNA stability and biosynthesis of the MRAS protein31,32
RNA editingedQTLOnly a few disease-associated variants have been reported to directly affect RNA modifications or RNA editing, e.g. adenosine-to-inosine conversion. Although it has been shown that variants that affect RNA editing (so-called edQTLs) can contribute to the genetic risk of common inflammatory diseases,33 comprehensive datasets of edQTLs are missing.Recently, 81 variants associated with CAD or acute MI were identified to affect RNA modifications.34 Four of these variants were genome-wide significant for CAD or acute MI (rs3739998 in JCAD, rs148172130 in RPL14, rs12190287 in TCF21, and rs186643756 in PVT1).
RNA splicingsQTLAlternative splicing is critical in atherosclerosis.35 Like eQTL analyses, genotyping and isoform-sensitive RNA sequencing are required to detect splice (s)QTLs that can impact alternative splicing (e.g. exon skipping) and/or isoform usage.The exon variant rs688 leads to alternative splicing of LDLR mRNA, rapid degradation of the LDLR isoform, and increased LDL cholesterol levels. Rare intronic LDLR variants were also identified to affect splicing in familial hypercholesterolemia patients.36,37
Circular RNAcircRNAs-seqCircular (circ)RNAs, products of back-splicing of precursor mRNAs and covalent ligation of the 3′ and 5′ end, are abundantly expressed with high evolutionary conservation, show high tissue specificity, and exert their regulatory functions by miRNA sponging, protein sponging, or direct interaction with proteins of the transcriptional machinery.38 Detection methods for circRNAs can be found in these reviews.39,40CircRNAs have been linked to various cardiovascular diseases38,41 (e.g. circANRIL, circSATB2, circRUSC2, or circCHFR).38,42 The circular version of the antisense non-coding RNA at the INK4 locus (circANRIL) transcribed on the 9p21 locus is more abundant in carriers of the CAD-protective haplotype. The protective effect is thought to be due to circANRIL-mediated disturbed maturation of precursor rRNA, thereby inducing nucleolar stress and apoptosis in vascular SMCs and macrophages.16,43
ProteinProtein levelpQTLVariants that impact protein level are called pQTLs, which are identified through association tests of genotypes and protein abundance in certain tissues or cell types.A dose–response relationship has been described for lipoprotein(a), with protective CAD variants lowering lipoprotein(a) level, whereas higher levels of lipoprotein(a) were found in individuals carrying CAD-causal variants12
Protein functionEnzyme activityMissense variants that change the amino sequence of a protein can alter protein function in many ways. Therefore, enzyme specific functional assays must be carefully designed to confirm the impact of a missense variant. However, a variety of bioinformatics prediction tools are available (e.g. LoFtool44 or AlphaMissense.45At least 20 rare loss-of-function PCSK9 variants46 and 1 common missense variant in PCSK9 have been reported.7 The consequences of these variants can range from degradation of PCSK9, compromised intracellular transport, aberrant autocatalysis, or reduced affinity for the LDLR on the liver surface which is normally targeted through PCSK9 to lysosomal degradation after internalization of the LDLR-LDL complex.
Protein modificationMass spectrometry (MS), Western blot analysis (WB)Missense variants that alter post-translational modifications have been reported frequently. MS is widely used to detect post-translational modification such as phosphorylation. WB can confirm such findings but is less sensitive.A coding variant rs11556924-T (p.Arg363His) of ZC3HC1 (involved in cell cycle) results in enhanced phosphorylation at serin 395 of the ZC3HC1 protein, thereby reducing its activity.47 Of note, synonymous variants can have functional effects on mRNA stability and may contribute to co-translational misfolding or changes in co-translational modifications such as glycosylation.48
Interaction partnerCrosslinking mass spectrometry (clMS), co-immunoprecipitation (Co-IP), fluorescence resonance energy transfer (FRET), yeast two-hybrid screening (Y2H)Missense variants can affect the binding affinity to binding partners with multiple consequences, depending on the nature of binding partners (e.g. proteinases or substrates). To detect protein–protein interactions, several methods are available such as high-throughput clMS49 as well as targeted approaches such as co-IP, FRET, Y2H, and others.50Due to its size, the ADAMTS7 protein has many interaction partners, such as activators (e.g. furin51,52), inhibitors (e.g. PRGN48 or A2M53) and substrates (e.g. TSP-1,54 TIMP1,55 SVEP1,56 or COMP57). The protective minor allele rs3825807-G (p.Ser214Pro) hampers furin-dependent cleavage of the pro-domain of ADAMTS7, resulting in lower level of active ADAMST7
LevelRegulatory featureAnalysisDescriptionExample of CAD-associated genes
GenomeChromatin stateATAC-seq or DNase-seqBoth sequencing techniques allow for the detection of accessible chromatin, a prerequisite for active regulation of gene expression. Variants that affect chromatin accessibility are called caQTLs.The caQTL variant rs2692224 located downstream of the FN1 gene was identified using ATAC-seq in human coronary artery SMCs28
Enhancer/TF binding sitesChIP-seq, CRISPR-Cas perturbationChromatin immunoprecipitation (ChIP) is combined with DNA-seq. DNA and proteins (histones or TFs) are crosslinked. Fragmented protein-bound DNA is captured using antibodies and sequenced. Variants that alter TF binding are called bQTLs. CREs can be confirmed using CRISPR-Cas perturbation experiments.17By combining DNase-seq and histone ChIP-seq data, Turner et al. identified a protective T allele of rs17293632 that disrupts an activator protein-1 site in a SMAD3 intron enhancer, resulting in reduced SMAD3 expression.29 Toropainen et al. also identified this variant in ECs.30
Chromatin loopingHi-C-seqHi-C-seq combines DNA proximity ligation with high-throughput sequencing in a genome-wide fashion to identify interacting regulatory features such as enhancers and promotors. Variants that affect chromatin looping are called clQTLs.The caQTL variant rs2692224 in the FN1 locus has also been described to alter chromatin looping in human coronary artery SMCs28
RNARNA leveleQTL, reporter assaysVariants that impact transcript level or gene expression (e) are called eQTLs. To detect eQTLs, genotyping and RNA sequencing are combined followed by association tests. Allele specific activity can be confirmed by reporter assay such as MPRA or STARR-seq.17About 85% of CAD loci contain eQTLs (see Supplementary material online, Table S1). The SMAD3 variant rs17293632 is one example in which the eQTL can be explained by the modulation of a TF binding site. However, eQTLs are often cell type and context-specific, i.e. only detectable after adding a certain stimulus.
UTR variantsmRNA stability/miRNA binding, etc.UTR variants can have a variety of functional consequences such as altering the secondary structure, stability, location, translation, or binding of microRNAs or RNA-binding proteins. There are bioinformatics tools to predict mRNA stability or binding of microRNAs (e.g. https://mirdb.org/).Two CAD-associated variants (rs9818870 and rs40593) are located in the 3′-UTR of the MRAS gene, adjacent to a cluster of miRNA binding sites, thereby most likely affecting mRNA stability and biosynthesis of the MRAS protein31,32
RNA editingedQTLOnly a few disease-associated variants have been reported to directly affect RNA modifications or RNA editing, e.g. adenosine-to-inosine conversion. Although it has been shown that variants that affect RNA editing (so-called edQTLs) can contribute to the genetic risk of common inflammatory diseases,33 comprehensive datasets of edQTLs are missing.Recently, 81 variants associated with CAD or acute MI were identified to affect RNA modifications.34 Four of these variants were genome-wide significant for CAD or acute MI (rs3739998 in JCAD, rs148172130 in RPL14, rs12190287 in TCF21, and rs186643756 in PVT1).
RNA splicingsQTLAlternative splicing is critical in atherosclerosis.35 Like eQTL analyses, genotyping and isoform-sensitive RNA sequencing are required to detect splice (s)QTLs that can impact alternative splicing (e.g. exon skipping) and/or isoform usage.The exon variant rs688 leads to alternative splicing of LDLR mRNA, rapid degradation of the LDLR isoform, and increased LDL cholesterol levels. Rare intronic LDLR variants were also identified to affect splicing in familial hypercholesterolemia patients.36,37
Circular RNAcircRNAs-seqCircular (circ)RNAs, products of back-splicing of precursor mRNAs and covalent ligation of the 3′ and 5′ end, are abundantly expressed with high evolutionary conservation, show high tissue specificity, and exert their regulatory functions by miRNA sponging, protein sponging, or direct interaction with proteins of the transcriptional machinery.38 Detection methods for circRNAs can be found in these reviews.39,40CircRNAs have been linked to various cardiovascular diseases38,41 (e.g. circANRIL, circSATB2, circRUSC2, or circCHFR).38,42 The circular version of the antisense non-coding RNA at the INK4 locus (circANRIL) transcribed on the 9p21 locus is more abundant in carriers of the CAD-protective haplotype. The protective effect is thought to be due to circANRIL-mediated disturbed maturation of precursor rRNA, thereby inducing nucleolar stress and apoptosis in vascular SMCs and macrophages.16,43
ProteinProtein levelpQTLVariants that impact protein level are called pQTLs, which are identified through association tests of genotypes and protein abundance in certain tissues or cell types.A dose–response relationship has been described for lipoprotein(a), with protective CAD variants lowering lipoprotein(a) level, whereas higher levels of lipoprotein(a) were found in individuals carrying CAD-causal variants12
Protein functionEnzyme activityMissense variants that change the amino sequence of a protein can alter protein function in many ways. Therefore, enzyme specific functional assays must be carefully designed to confirm the impact of a missense variant. However, a variety of bioinformatics prediction tools are available (e.g. LoFtool44 or AlphaMissense.45At least 20 rare loss-of-function PCSK9 variants46 and 1 common missense variant in PCSK9 have been reported.7 The consequences of these variants can range from degradation of PCSK9, compromised intracellular transport, aberrant autocatalysis, or reduced affinity for the LDLR on the liver surface which is normally targeted through PCSK9 to lysosomal degradation after internalization of the LDLR-LDL complex.
Protein modificationMass spectrometry (MS), Western blot analysis (WB)Missense variants that alter post-translational modifications have been reported frequently. MS is widely used to detect post-translational modification such as phosphorylation. WB can confirm such findings but is less sensitive.A coding variant rs11556924-T (p.Arg363His) of ZC3HC1 (involved in cell cycle) results in enhanced phosphorylation at serin 395 of the ZC3HC1 protein, thereby reducing its activity.47 Of note, synonymous variants can have functional effects on mRNA stability and may contribute to co-translational misfolding or changes in co-translational modifications such as glycosylation.48
Interaction partnerCrosslinking mass spectrometry (clMS), co-immunoprecipitation (Co-IP), fluorescence resonance energy transfer (FRET), yeast two-hybrid screening (Y2H)Missense variants can affect the binding affinity to binding partners with multiple consequences, depending on the nature of binding partners (e.g. proteinases or substrates). To detect protein–protein interactions, several methods are available such as high-throughput clMS49 as well as targeted approaches such as co-IP, FRET, Y2H, and others.50Due to its size, the ADAMTS7 protein has many interaction partners, such as activators (e.g. furin51,52), inhibitors (e.g. PRGN48 or A2M53) and substrates (e.g. TSP-1,54 TIMP1,55 SVEP1,56 or COMP57). The protective minor allele rs3825807-G (p.Ser214Pro) hampers furin-dependent cleavage of the pro-domain of ADAMTS7, resulting in lower level of active ADAMST7

Abbreviations: ADAMTS7, a disintegrin and metalloproteinase with thrombospondin motifs 7; ATAC-seq, assay for transposase-accessible chromatin with high-throughput sequencing; A2M, alpha-2-macroglobulin; ChIP-seq, chromatin immunoprecipitation sequencing; CRISPR, clustered regularly interspaced short palindromic repeats; COMP, cartilage oligomeric matrix protein; DNase-seq, Dnase I hypersensitive sites sequencing; ECs, endothelial cells; FN1, fibronectin 1; LDLR, low density lipoprotein receptor; MPRA, massively parallel reporter assay; MRAS, muscle RAS oncogene homologue; PCSK9, proprotein convertase subtilisin/kexin type 9; PRGN, progranulin; QTL, quantitative trait loci; rRNA, ribosomal RNA; SMAD3, SMAD family member 3; SMCs, smooth muscle cells; STARR-seq, self-transcribing active regulatory region sequencing; SVEP1, Sushi, von Willebrand factor type A, EGF and pentraxin domain-containing protein 1; TIMP1, tissue inhibitor of metalloproteinases 1; TSP-1, thrombospondin-1; UTR, untranslated region.

Table 2

Exemplary list of variant consequences and detection methods

LevelRegulatory featureAnalysisDescriptionExample of CAD-associated genes
GenomeChromatin stateATAC-seq or DNase-seqBoth sequencing techniques allow for the detection of accessible chromatin, a prerequisite for active regulation of gene expression. Variants that affect chromatin accessibility are called caQTLs.The caQTL variant rs2692224 located downstream of the FN1 gene was identified using ATAC-seq in human coronary artery SMCs28
Enhancer/TF binding sitesChIP-seq, CRISPR-Cas perturbationChromatin immunoprecipitation (ChIP) is combined with DNA-seq. DNA and proteins (histones or TFs) are crosslinked. Fragmented protein-bound DNA is captured using antibodies and sequenced. Variants that alter TF binding are called bQTLs. CREs can be confirmed using CRISPR-Cas perturbation experiments.17By combining DNase-seq and histone ChIP-seq data, Turner et al. identified a protective T allele of rs17293632 that disrupts an activator protein-1 site in a SMAD3 intron enhancer, resulting in reduced SMAD3 expression.29 Toropainen et al. also identified this variant in ECs.30
Chromatin loopingHi-C-seqHi-C-seq combines DNA proximity ligation with high-throughput sequencing in a genome-wide fashion to identify interacting regulatory features such as enhancers and promotors. Variants that affect chromatin looping are called clQTLs.The caQTL variant rs2692224 in the FN1 locus has also been described to alter chromatin looping in human coronary artery SMCs28
RNARNA leveleQTL, reporter assaysVariants that impact transcript level or gene expression (e) are called eQTLs. To detect eQTLs, genotyping and RNA sequencing are combined followed by association tests. Allele specific activity can be confirmed by reporter assay such as MPRA or STARR-seq.17About 85% of CAD loci contain eQTLs (see Supplementary material online, Table S1). The SMAD3 variant rs17293632 is one example in which the eQTL can be explained by the modulation of a TF binding site. However, eQTLs are often cell type and context-specific, i.e. only detectable after adding a certain stimulus.
UTR variantsmRNA stability/miRNA binding, etc.UTR variants can have a variety of functional consequences such as altering the secondary structure, stability, location, translation, or binding of microRNAs or RNA-binding proteins. There are bioinformatics tools to predict mRNA stability or binding of microRNAs (e.g. https://mirdb.org/).Two CAD-associated variants (rs9818870 and rs40593) are located in the 3′-UTR of the MRAS gene, adjacent to a cluster of miRNA binding sites, thereby most likely affecting mRNA stability and biosynthesis of the MRAS protein31,32
RNA editingedQTLOnly a few disease-associated variants have been reported to directly affect RNA modifications or RNA editing, e.g. adenosine-to-inosine conversion. Although it has been shown that variants that affect RNA editing (so-called edQTLs) can contribute to the genetic risk of common inflammatory diseases,33 comprehensive datasets of edQTLs are missing.Recently, 81 variants associated with CAD or acute MI were identified to affect RNA modifications.34 Four of these variants were genome-wide significant for CAD or acute MI (rs3739998 in JCAD, rs148172130 in RPL14, rs12190287 in TCF21, and rs186643756 in PVT1).
RNA splicingsQTLAlternative splicing is critical in atherosclerosis.35 Like eQTL analyses, genotyping and isoform-sensitive RNA sequencing are required to detect splice (s)QTLs that can impact alternative splicing (e.g. exon skipping) and/or isoform usage.The exon variant rs688 leads to alternative splicing of LDLR mRNA, rapid degradation of the LDLR isoform, and increased LDL cholesterol levels. Rare intronic LDLR variants were also identified to affect splicing in familial hypercholesterolemia patients.36,37
Circular RNAcircRNAs-seqCircular (circ)RNAs, products of back-splicing of precursor mRNAs and covalent ligation of the 3′ and 5′ end, are abundantly expressed with high evolutionary conservation, show high tissue specificity, and exert their regulatory functions by miRNA sponging, protein sponging, or direct interaction with proteins of the transcriptional machinery.38 Detection methods for circRNAs can be found in these reviews.39,40CircRNAs have been linked to various cardiovascular diseases38,41 (e.g. circANRIL, circSATB2, circRUSC2, or circCHFR).38,42 The circular version of the antisense non-coding RNA at the INK4 locus (circANRIL) transcribed on the 9p21 locus is more abundant in carriers of the CAD-protective haplotype. The protective effect is thought to be due to circANRIL-mediated disturbed maturation of precursor rRNA, thereby inducing nucleolar stress and apoptosis in vascular SMCs and macrophages.16,43
ProteinProtein levelpQTLVariants that impact protein level are called pQTLs, which are identified through association tests of genotypes and protein abundance in certain tissues or cell types.A dose–response relationship has been described for lipoprotein(a), with protective CAD variants lowering lipoprotein(a) level, whereas higher levels of lipoprotein(a) were found in individuals carrying CAD-causal variants12
Protein functionEnzyme activityMissense variants that change the amino sequence of a protein can alter protein function in many ways. Therefore, enzyme specific functional assays must be carefully designed to confirm the impact of a missense variant. However, a variety of bioinformatics prediction tools are available (e.g. LoFtool44 or AlphaMissense.45At least 20 rare loss-of-function PCSK9 variants46 and 1 common missense variant in PCSK9 have been reported.7 The consequences of these variants can range from degradation of PCSK9, compromised intracellular transport, aberrant autocatalysis, or reduced affinity for the LDLR on the liver surface which is normally targeted through PCSK9 to lysosomal degradation after internalization of the LDLR-LDL complex.
Protein modificationMass spectrometry (MS), Western blot analysis (WB)Missense variants that alter post-translational modifications have been reported frequently. MS is widely used to detect post-translational modification such as phosphorylation. WB can confirm such findings but is less sensitive.A coding variant rs11556924-T (p.Arg363His) of ZC3HC1 (involved in cell cycle) results in enhanced phosphorylation at serin 395 of the ZC3HC1 protein, thereby reducing its activity.47 Of note, synonymous variants can have functional effects on mRNA stability and may contribute to co-translational misfolding or changes in co-translational modifications such as glycosylation.48
Interaction partnerCrosslinking mass spectrometry (clMS), co-immunoprecipitation (Co-IP), fluorescence resonance energy transfer (FRET), yeast two-hybrid screening (Y2H)Missense variants can affect the binding affinity to binding partners with multiple consequences, depending on the nature of binding partners (e.g. proteinases or substrates). To detect protein–protein interactions, several methods are available such as high-throughput clMS49 as well as targeted approaches such as co-IP, FRET, Y2H, and others.50Due to its size, the ADAMTS7 protein has many interaction partners, such as activators (e.g. furin51,52), inhibitors (e.g. PRGN48 or A2M53) and substrates (e.g. TSP-1,54 TIMP1,55 SVEP1,56 or COMP57). The protective minor allele rs3825807-G (p.Ser214Pro) hampers furin-dependent cleavage of the pro-domain of ADAMTS7, resulting in lower level of active ADAMST7
LevelRegulatory featureAnalysisDescriptionExample of CAD-associated genes
GenomeChromatin stateATAC-seq or DNase-seqBoth sequencing techniques allow for the detection of accessible chromatin, a prerequisite for active regulation of gene expression. Variants that affect chromatin accessibility are called caQTLs.The caQTL variant rs2692224 located downstream of the FN1 gene was identified using ATAC-seq in human coronary artery SMCs28
Enhancer/TF binding sitesChIP-seq, CRISPR-Cas perturbationChromatin immunoprecipitation (ChIP) is combined with DNA-seq. DNA and proteins (histones or TFs) are crosslinked. Fragmented protein-bound DNA is captured using antibodies and sequenced. Variants that alter TF binding are called bQTLs. CREs can be confirmed using CRISPR-Cas perturbation experiments.17By combining DNase-seq and histone ChIP-seq data, Turner et al. identified a protective T allele of rs17293632 that disrupts an activator protein-1 site in a SMAD3 intron enhancer, resulting in reduced SMAD3 expression.29 Toropainen et al. also identified this variant in ECs.30
Chromatin loopingHi-C-seqHi-C-seq combines DNA proximity ligation with high-throughput sequencing in a genome-wide fashion to identify interacting regulatory features such as enhancers and promotors. Variants that affect chromatin looping are called clQTLs.The caQTL variant rs2692224 in the FN1 locus has also been described to alter chromatin looping in human coronary artery SMCs28
RNARNA leveleQTL, reporter assaysVariants that impact transcript level or gene expression (e) are called eQTLs. To detect eQTLs, genotyping and RNA sequencing are combined followed by association tests. Allele specific activity can be confirmed by reporter assay such as MPRA or STARR-seq.17About 85% of CAD loci contain eQTLs (see Supplementary material online, Table S1). The SMAD3 variant rs17293632 is one example in which the eQTL can be explained by the modulation of a TF binding site. However, eQTLs are often cell type and context-specific, i.e. only detectable after adding a certain stimulus.
UTR variantsmRNA stability/miRNA binding, etc.UTR variants can have a variety of functional consequences such as altering the secondary structure, stability, location, translation, or binding of microRNAs or RNA-binding proteins. There are bioinformatics tools to predict mRNA stability or binding of microRNAs (e.g. https://mirdb.org/).Two CAD-associated variants (rs9818870 and rs40593) are located in the 3′-UTR of the MRAS gene, adjacent to a cluster of miRNA binding sites, thereby most likely affecting mRNA stability and biosynthesis of the MRAS protein31,32
RNA editingedQTLOnly a few disease-associated variants have been reported to directly affect RNA modifications or RNA editing, e.g. adenosine-to-inosine conversion. Although it has been shown that variants that affect RNA editing (so-called edQTLs) can contribute to the genetic risk of common inflammatory diseases,33 comprehensive datasets of edQTLs are missing.Recently, 81 variants associated with CAD or acute MI were identified to affect RNA modifications.34 Four of these variants were genome-wide significant for CAD or acute MI (rs3739998 in JCAD, rs148172130 in RPL14, rs12190287 in TCF21, and rs186643756 in PVT1).
RNA splicingsQTLAlternative splicing is critical in atherosclerosis.35 Like eQTL analyses, genotyping and isoform-sensitive RNA sequencing are required to detect splice (s)QTLs that can impact alternative splicing (e.g. exon skipping) and/or isoform usage.The exon variant rs688 leads to alternative splicing of LDLR mRNA, rapid degradation of the LDLR isoform, and increased LDL cholesterol levels. Rare intronic LDLR variants were also identified to affect splicing in familial hypercholesterolemia patients.36,37
Circular RNAcircRNAs-seqCircular (circ)RNAs, products of back-splicing of precursor mRNAs and covalent ligation of the 3′ and 5′ end, are abundantly expressed with high evolutionary conservation, show high tissue specificity, and exert their regulatory functions by miRNA sponging, protein sponging, or direct interaction with proteins of the transcriptional machinery.38 Detection methods for circRNAs can be found in these reviews.39,40CircRNAs have been linked to various cardiovascular diseases38,41 (e.g. circANRIL, circSATB2, circRUSC2, or circCHFR).38,42 The circular version of the antisense non-coding RNA at the INK4 locus (circANRIL) transcribed on the 9p21 locus is more abundant in carriers of the CAD-protective haplotype. The protective effect is thought to be due to circANRIL-mediated disturbed maturation of precursor rRNA, thereby inducing nucleolar stress and apoptosis in vascular SMCs and macrophages.16,43
ProteinProtein levelpQTLVariants that impact protein level are called pQTLs, which are identified through association tests of genotypes and protein abundance in certain tissues or cell types.A dose–response relationship has been described for lipoprotein(a), with protective CAD variants lowering lipoprotein(a) level, whereas higher levels of lipoprotein(a) were found in individuals carrying CAD-causal variants12
Protein functionEnzyme activityMissense variants that change the amino sequence of a protein can alter protein function in many ways. Therefore, enzyme specific functional assays must be carefully designed to confirm the impact of a missense variant. However, a variety of bioinformatics prediction tools are available (e.g. LoFtool44 or AlphaMissense.45At least 20 rare loss-of-function PCSK9 variants46 and 1 common missense variant in PCSK9 have been reported.7 The consequences of these variants can range from degradation of PCSK9, compromised intracellular transport, aberrant autocatalysis, or reduced affinity for the LDLR on the liver surface which is normally targeted through PCSK9 to lysosomal degradation after internalization of the LDLR-LDL complex.
Protein modificationMass spectrometry (MS), Western blot analysis (WB)Missense variants that alter post-translational modifications have been reported frequently. MS is widely used to detect post-translational modification such as phosphorylation. WB can confirm such findings but is less sensitive.A coding variant rs11556924-T (p.Arg363His) of ZC3HC1 (involved in cell cycle) results in enhanced phosphorylation at serin 395 of the ZC3HC1 protein, thereby reducing its activity.47 Of note, synonymous variants can have functional effects on mRNA stability and may contribute to co-translational misfolding or changes in co-translational modifications such as glycosylation.48
Interaction partnerCrosslinking mass spectrometry (clMS), co-immunoprecipitation (Co-IP), fluorescence resonance energy transfer (FRET), yeast two-hybrid screening (Y2H)Missense variants can affect the binding affinity to binding partners with multiple consequences, depending on the nature of binding partners (e.g. proteinases or substrates). To detect protein–protein interactions, several methods are available such as high-throughput clMS49 as well as targeted approaches such as co-IP, FRET, Y2H, and others.50Due to its size, the ADAMTS7 protein has many interaction partners, such as activators (e.g. furin51,52), inhibitors (e.g. PRGN48 or A2M53) and substrates (e.g. TSP-1,54 TIMP1,55 SVEP1,56 or COMP57). The protective minor allele rs3825807-G (p.Ser214Pro) hampers furin-dependent cleavage of the pro-domain of ADAMTS7, resulting in lower level of active ADAMST7

Abbreviations: ADAMTS7, a disintegrin and metalloproteinase with thrombospondin motifs 7; ATAC-seq, assay for transposase-accessible chromatin with high-throughput sequencing; A2M, alpha-2-macroglobulin; ChIP-seq, chromatin immunoprecipitation sequencing; CRISPR, clustered regularly interspaced short palindromic repeats; COMP, cartilage oligomeric matrix protein; DNase-seq, Dnase I hypersensitive sites sequencing; ECs, endothelial cells; FN1, fibronectin 1; LDLR, low density lipoprotein receptor; MPRA, massively parallel reporter assay; MRAS, muscle RAS oncogene homologue; PCSK9, proprotein convertase subtilisin/kexin type 9; PRGN, progranulin; QTL, quantitative trait loci; rRNA, ribosomal RNA; SMAD3, SMAD family member 3; SMCs, smooth muscle cells; STARR-seq, self-transcribing active regulatory region sequencing; SVEP1, Sushi, von Willebrand factor type A, EGF and pentraxin domain-containing protein 1; TIMP1, tissue inhibitor of metalloproteinases 1; TSP-1, thrombospondin-1; UTR, untranslated region.

2.2 Prioritizing causal variants and genes at CAD GWAS loci

In the last decade, the number of identified variants associated with CAD has increased dramatically due to larger GWAS; however, the effect sizes of these additional variants are rather small (i.e. odds ratio < 1.0527), making it even more challenging to confirm the causality of disease-driving variants and corresponding genes. If CAD variants are protein coding, linking causal genes is often straightforward. A total of 104 CAD risk loci with 164 protein-altering variants, representing sentinel variants or proxy variants (r2 ≥ 0.6), have been identified so far (see Supplementary material online, Table S1). However, about 95% of CAD variants are in non-coding regions that moderately affect gene expression.58 Many of the CAD loci are broad and contain multiple proximal genes as well as co-inherited variants in high LD. In addition, many variants show cell type specificity, and their regulatory potential are often only detectable in a context-specific manner, for example in response to a certain stimulus,30,59,60 making it even more difficult to determine which specific genetic factors are causally linked to CAD.

To tackle this problem, scientists have developed various approaches for prioritizing candidate genes and variants in GWAS loci.61–68 One approach is to use functional annotations to identify variants that are likely to have a regulatory influence on gene expression or protein function as they are located in gene promoters, enhancers, or coding regions. Successful examples in which the functional activity of regulatory risk variants has been confirmed in vitro can be found here7,28,69–71 (and above).

Functional annotations are often combined with statistical approaches, such as fine mapping19,21,72 and colocalization with molecular traits73–75 to underpin causality of variants and genes. Fine mapping identifies causal variants within a genomic region, while colocalization examines whether multiple traits or diseases share genetic variants. Multivariate colocalization includes fine mapping as part of its analysis. These statistical methods are affected by various parameters such as thresholds (e.g. P-value or false discovery rate) that are set for prior probabilities, and differences in haplotype structures of the populations from which GWAS data are collected. For instance, colocalization analysis is simple when the lead variants for GWAS and molecular quantitative trait loci (QTL) studies are the same or in high LD in both populations. While colocalization or fine-mapping analyses from a multi-ethnic population can identify common variants that have disease relevance for all ethnic groups, some ancestry-specific variants may still be missed due to differences in haplotype structures.

Another approach is to use gene-based tests that prioritize genes with a high burden of genetic variation, such as rare or common variants with large effect sizes. Multiple SNP-to-gene pipelines are now available that integrate a variety of datasets and perform machine learning to provide a probability score that displays the likelihood that a variant is regulatory active and affects a certain gene. Table 3 summarizes frequently used SNP-to-gene pipelines that provide variant scores via file transfer protocol (FTP) server, application programming interfaces (API) or web interfaces as well as Python/R tools.

Table 3

Overview of exemplary SNP-to-gene pipelines

PipelineDescriptionAvailableReferences
Open Targets GeneticsThe ‘locus-to-gene’ (L2G) model derives features to prioritize likely causal genes at each GWAS locus based on genetic and functional genomics featuresFTP, API, web browser66
RegulomeDBA database that provides functional context to variants and serves as a tool to prioritize functionally important single nucleotide variants located within non-coding regionsFTP, web browser26
FUMA GWASThe SNP2GENE function takes GWAS summary statistics as an input and provides extensive functional annotation for all SNPs in genomic areas identified by lead SNPsWeb browser78
Functional genome wide association analysis (FGWAS)FGWAS consists of three components, a multivariate varying coefficient model, a global sure independence screening procedure, and a test procedure to discover important genetic variants and gene-environmental interactionsPython Package79
MAGMAA tool for gene analysis and generalized gene-set analysis of GWAS data. The gene analysis is based on a multiple regression model to provide better statistical performance.Shell tool80
DEPICTAn integrative tool that employs predicted gene functions to systematically prioritize the most likely causal genes at associated loci, highlight enriched pathways, and identify tissues/cell types where genes from associated loci are highly expressedPython package81
PoPsPolygenic priority score (PoPs) is a gene prioritization method that leverages genome-wide signal from GWAS summary statistics and incorporates data from an extensive set of public bulk and single-cell expression datasets, curated biological pathways, and predicted protein–protein interactionsPython script82
Effector indexMachine learning of commonly used genomic features, including open chromatin maps, eQTL, and chromatin conformation data to predict target genes at GWAS lociR/shell tool83
Summary-data-based Mendelian randomization (SMR)SMR test for pleiotropic association between the expression level of a gene and a complex trait of interest using summary-level data from GWAS and eQTL studiesR script75
ABC scoreIn combination with CRISPRi-FlowFISH the ABC model provide a systematic approach to map and predict which enhancers regulate which genesFTP, web browser76
GeneHancerGenome-wide integration of enhancers and target genes in GeneCardsWeb browser84
DeepSEADeepSEA is a deep learning framework that predicts genomic variant effects on a wide range of regulatory features with single nucleotide sensitivity: TFs binding, DNase I hypersensitive sites, and histone marks in multiple human cell typesWeb browser76
PipelineDescriptionAvailableReferences
Open Targets GeneticsThe ‘locus-to-gene’ (L2G) model derives features to prioritize likely causal genes at each GWAS locus based on genetic and functional genomics featuresFTP, API, web browser66
RegulomeDBA database that provides functional context to variants and serves as a tool to prioritize functionally important single nucleotide variants located within non-coding regionsFTP, web browser26
FUMA GWASThe SNP2GENE function takes GWAS summary statistics as an input and provides extensive functional annotation for all SNPs in genomic areas identified by lead SNPsWeb browser78
Functional genome wide association analysis (FGWAS)FGWAS consists of three components, a multivariate varying coefficient model, a global sure independence screening procedure, and a test procedure to discover important genetic variants and gene-environmental interactionsPython Package79
MAGMAA tool for gene analysis and generalized gene-set analysis of GWAS data. The gene analysis is based on a multiple regression model to provide better statistical performance.Shell tool80
DEPICTAn integrative tool that employs predicted gene functions to systematically prioritize the most likely causal genes at associated loci, highlight enriched pathways, and identify tissues/cell types where genes from associated loci are highly expressedPython package81
PoPsPolygenic priority score (PoPs) is a gene prioritization method that leverages genome-wide signal from GWAS summary statistics and incorporates data from an extensive set of public bulk and single-cell expression datasets, curated biological pathways, and predicted protein–protein interactionsPython script82
Effector indexMachine learning of commonly used genomic features, including open chromatin maps, eQTL, and chromatin conformation data to predict target genes at GWAS lociR/shell tool83
Summary-data-based Mendelian randomization (SMR)SMR test for pleiotropic association between the expression level of a gene and a complex trait of interest using summary-level data from GWAS and eQTL studiesR script75
ABC scoreIn combination with CRISPRi-FlowFISH the ABC model provide a systematic approach to map and predict which enhancers regulate which genesFTP, web browser76
GeneHancerGenome-wide integration of enhancers and target genes in GeneCardsWeb browser84
DeepSEADeepSEA is a deep learning framework that predicts genomic variant effects on a wide range of regulatory features with single nucleotide sensitivity: TFs binding, DNase I hypersensitive sites, and histone marks in multiple human cell typesWeb browser76
Table 3

Overview of exemplary SNP-to-gene pipelines

PipelineDescriptionAvailableReferences
Open Targets GeneticsThe ‘locus-to-gene’ (L2G) model derives features to prioritize likely causal genes at each GWAS locus based on genetic and functional genomics featuresFTP, API, web browser66
RegulomeDBA database that provides functional context to variants and serves as a tool to prioritize functionally important single nucleotide variants located within non-coding regionsFTP, web browser26
FUMA GWASThe SNP2GENE function takes GWAS summary statistics as an input and provides extensive functional annotation for all SNPs in genomic areas identified by lead SNPsWeb browser78
Functional genome wide association analysis (FGWAS)FGWAS consists of three components, a multivariate varying coefficient model, a global sure independence screening procedure, and a test procedure to discover important genetic variants and gene-environmental interactionsPython Package79
MAGMAA tool for gene analysis and generalized gene-set analysis of GWAS data. The gene analysis is based on a multiple regression model to provide better statistical performance.Shell tool80
DEPICTAn integrative tool that employs predicted gene functions to systematically prioritize the most likely causal genes at associated loci, highlight enriched pathways, and identify tissues/cell types where genes from associated loci are highly expressedPython package81
PoPsPolygenic priority score (PoPs) is a gene prioritization method that leverages genome-wide signal from GWAS summary statistics and incorporates data from an extensive set of public bulk and single-cell expression datasets, curated biological pathways, and predicted protein–protein interactionsPython script82
Effector indexMachine learning of commonly used genomic features, including open chromatin maps, eQTL, and chromatin conformation data to predict target genes at GWAS lociR/shell tool83
Summary-data-based Mendelian randomization (SMR)SMR test for pleiotropic association between the expression level of a gene and a complex trait of interest using summary-level data from GWAS and eQTL studiesR script75
ABC scoreIn combination with CRISPRi-FlowFISH the ABC model provide a systematic approach to map and predict which enhancers regulate which genesFTP, web browser76
GeneHancerGenome-wide integration of enhancers and target genes in GeneCardsWeb browser84
DeepSEADeepSEA is a deep learning framework that predicts genomic variant effects on a wide range of regulatory features with single nucleotide sensitivity: TFs binding, DNase I hypersensitive sites, and histone marks in multiple human cell typesWeb browser76
PipelineDescriptionAvailableReferences
Open Targets GeneticsThe ‘locus-to-gene’ (L2G) model derives features to prioritize likely causal genes at each GWAS locus based on genetic and functional genomics featuresFTP, API, web browser66
RegulomeDBA database that provides functional context to variants and serves as a tool to prioritize functionally important single nucleotide variants located within non-coding regionsFTP, web browser26
FUMA GWASThe SNP2GENE function takes GWAS summary statistics as an input and provides extensive functional annotation for all SNPs in genomic areas identified by lead SNPsWeb browser78
Functional genome wide association analysis (FGWAS)FGWAS consists of three components, a multivariate varying coefficient model, a global sure independence screening procedure, and a test procedure to discover important genetic variants and gene-environmental interactionsPython Package79
MAGMAA tool for gene analysis and generalized gene-set analysis of GWAS data. The gene analysis is based on a multiple regression model to provide better statistical performance.Shell tool80
DEPICTAn integrative tool that employs predicted gene functions to systematically prioritize the most likely causal genes at associated loci, highlight enriched pathways, and identify tissues/cell types where genes from associated loci are highly expressedPython package81
PoPsPolygenic priority score (PoPs) is a gene prioritization method that leverages genome-wide signal from GWAS summary statistics and incorporates data from an extensive set of public bulk and single-cell expression datasets, curated biological pathways, and predicted protein–protein interactionsPython script82
Effector indexMachine learning of commonly used genomic features, including open chromatin maps, eQTL, and chromatin conformation data to predict target genes at GWAS lociR/shell tool83
Summary-data-based Mendelian randomization (SMR)SMR test for pleiotropic association between the expression level of a gene and a complex trait of interest using summary-level data from GWAS and eQTL studiesR script75
ABC scoreIn combination with CRISPRi-FlowFISH the ABC model provide a systematic approach to map and predict which enhancers regulate which genesFTP, web browser76
GeneHancerGenome-wide integration of enhancers and target genes in GeneCardsWeb browser84
DeepSEADeepSEA is a deep learning framework that predicts genomic variant effects on a wide range of regulatory features with single nucleotide sensitivity: TFs binding, DNase I hypersensitive sites, and histone marks in multiple human cell typesWeb browser76

In this review, we provide a comprehensive list of putative causal CAD risk genes with a cs for each gene of a CAD GWAS locus within a 1 Mb window. This score was created by adding the following weights: n = 2 if a gene has been previously assigned to be causal,7,10  n = 2 if a gene is linked to variant with an activity-by-contact (ABC) score above 0.15,76  n = 2 if a gene has a locus-to-gene score derived from the Open Targets pipeline above 0.4,66  n = 1 if a gene is a cis-eQTL-affected gene (eGene) (see Qtlizer database77), and n = 1 if a gene is a smooth muscle cell (SMC)-specific eGene (quiescent or proliferative state)62 (see Supplementary material online, Table S1, for more details).

As expected for atherosclerosis and reviewed here,11 many high-scored genes regulate lipid metabolism, including APOE, LDLR, lipoprotein(a) (LPA), LPL, PCSK9, and SCARB1 (Figure 3A). Causative gene candidates with high confidence were identified in approximately 30% and risk gene candidates in 57% of all the GWAS CAD loci (Figure 3B). Of the 244 autosomal CAD susceptibility loci, only 30 loci have no reliable data supporting the association between the variant and its corresponding genes, whereas at least 15 CAD loci harbour two or more causative genes (Figure 3C and D).

Characterization of CAD risk loci. (A) The cs for each CAD risk gene proximal to a CAD index variant (±0.5 Mb) was calculated using following weights: causal in recent SNP-to-gene analyses = 27,10; V2G score from Opentargets Genetics = 2; ABC score = 285; eQTLs from Qtlizer database = 177; SMC-specific eQTLs = 1.62 A score above 10 is possible if two or more independent CAD associations were detected for a given gene. (B) The causative gene has been identified with very high confidence for around one-third of CAD risk loci. (C) Approximately 40% of susceptibility loci may harbour more than one causative gene. (D) The regional association of the LPA/PLG locus demonstrates the complexity of a GWAS signal. Independent index variants from different CAD GWASs are shown in purple. Genetic features and most severe consequences are from Ensembl (release 110). eQTL affecting the expression level of LPA in liver correlate with CAD risk. The eQTL effect sizes (beta values) are from the Qtlizer database77 and CAD GWAS summary statistics are from Ref. 7.
Figure 3

Characterization of CAD risk loci. (A) The cs for each CAD risk gene proximal to a CAD index variant (±0.5 Mb) was calculated using following weights: causal in recent SNP-to-gene analyses = 27,10; V2G score from Opentargets Genetics = 2; ABC score = 285; eQTLs from Qtlizer database = 177; SMC-specific eQTLs = 1.62 A score above 10 is possible if two or more independent CAD associations were detected for a given gene. (B) The causative gene has been identified with very high confidence for around one-third of CAD risk loci. (C) Approximately 40% of susceptibility loci may harbour more than one causative gene. (D) The regional association of the LPA/PLG locus demonstrates the complexity of a GWAS signal. Independent index variants from different CAD GWASs are shown in purple. Genetic features and most severe consequences are from Ensembl (release 110). eQTL affecting the expression level of LPA in liver correlate with CAD risk. The eQTL effect sizes (beta values) are from the Qtlizer database77 and CAD GWAS summary statistics are from Ref. 7.

The LPA locus illustrates the complexity of a GWAS signal as it contains multiple independent CAD risk variants (r2 < 0.4) that modulate more than two most likely causal genes. The variant-to-gene relationships for LPA, PLG, SLC22A1, and SLC22A3 are supported by several metrices, including polygenic priority score,7,82 Open Targets Genetic locus-to-gene score, and expression quantitative trait loci (eQTL) data (see Supplementary material online, Table S1). In addition, several independent variants in this locus are associated with LPA level (see GWAS Catalog and12 for more details). Moreover, it is well established that LPA and PLG are atherogenic factors due to their involvement in the fibrinolytic system and foam cell formation,86,87 which is also reviewed here.88

2.3 Identifying the tissues and cell types relevant to CAD

SNP- or gene-based tissue-specific enrichment analyses have proven useful to identify the cell types and tissues most relevant to CAD (Figure 4). For example, two groups have independently found that CAD SNPs are predominantly enriched in open chromatin regions of liver, adipose tissue, and blood vessels/artery tissue based on Dnase I hypersensitive sites6 or ChromHMM-derived chromatin states.7 In concordance, cis-eQTL enrichment revealed that a high proportion of CAD risk variants regulate transcriptional activity in arterial tissue.7 Zheng et al. used eight different computational methods to predict CAD potential causal genes and found that these genes were significantly overexpressed in adipose and liver tissues.89 These findings were confirmed by a large-scale genome-wide multi-ethnic association study90 using gene-property analyses (MAGMA and DEPICT) and others studies demonstrated that metabolic tissues (e.g. liver/adipose tissue) and vascular tissues (e.g. atherosclerotic arterial wall) are interconnected via cross-tissue regulatory gene networks.91–93

Relevant tissues and cell types in atherosclerosis. Liver and adipose tissue, which are critical for lipid metabolism, appear to be the most important atherogenic non-arterial tissues. Variants that are active in other tissue types also contribute to atherosclerosis, but the mechanisms are less well described. In the vessel wall, many lesional cell types can promote atherosclerosis, including dysfunctional ECs and infiltrated macrophages that uptake oxidized LDL particles (oxLDL). These oxLDL particles can also accumulate in the vessel wall by interacting with the extracellular matrix (ECM). The inflammatory environment triggers SMCs to remodel the arterial ECM through matrix metalloproteinases (MMPs) and ADAM family members (e.g. ADAMTS7), and to proliferate and migrate from the tunica media into the tunica intima. SMCs can adopt several subtypes (e.g. myofibroblast-like cells) in response to different stimuli (e.g. growth factors). CAD risk genes (cs >5) were allocated based on epigenetic enrichment of associated variants, cell-specific eQTLs, or tissue/cell type enriched gene expression (see Supplementary material online, Table S3). This figure was created with BioRender.com.
Figure 4

Relevant tissues and cell types in atherosclerosis. Liver and adipose tissue, which are critical for lipid metabolism, appear to be the most important atherogenic non-arterial tissues. Variants that are active in other tissue types also contribute to atherosclerosis, but the mechanisms are less well described. In the vessel wall, many lesional cell types can promote atherosclerosis, including dysfunctional ECs and infiltrated macrophages that uptake oxidized LDL particles (oxLDL). These oxLDL particles can also accumulate in the vessel wall by interacting with the extracellular matrix (ECM). The inflammatory environment triggers SMCs to remodel the arterial ECM through matrix metalloproteinases (MMPs) and ADAM family members (e.g. ADAMTS7), and to proliferate and migrate from the tunica media into the tunica intima. SMCs can adopt several subtypes (e.g. myofibroblast-like cells) in response to different stimuli (e.g. growth factors). CAD risk genes (cs >5) were allocated based on epigenetic enrichment of associated variants, cell-specific eQTLs, or tissue/cell type enriched gene expression (see Supplementary material online, Table S3). This figure was created with BioRender.com.

Lipid-associated CAD risk factors such as high low density lipoprotein (LDL) cholesterol can be readily treated using statins or PCSK9 modulation. However, many CAD risk loci have predicted roles in the arterial wall (e.g. ADAMTS7, GUCY1A1, NOS3, or MRAS)94,95 which has therefore become novel therapeutic target. The involvement of many cell types in atherosclerotic lesions, such as macrophages (MP), monocytes, lymphocytes, endothelial cells (ECs), SMCs, mast cells, and neutrophils, highlights the difficulty in identifying cell-specific genetic determinants of CAD risk.96,97 ECs and SMCs may be the most important, as single-cell epigenomics of five major lesional cell types (EC, SMC, MP, T cells, and B cells) revealed that CAD-associated genetic variants are enriched in EC- and SMC-specific open chromatin.65 In line with that, Tcheandjieu et al. highlighted the relevance of ECs, SMCs, and stromal–fibroblasts in the pathogenesis of CAD using MAGMA gene-property analyses of single-cell RNA datasets from mice and humans.90

However, the situation in atherosclerotic lesions is even more complex in terms of cell identity. Recent lineage tracing mouse models and single-cell RNA sequencing data98,99 demonstrated that lesional cell types are not homogenous, and there is considerable phenotypic evolution and cellular diversity within these cell types in atherosclerotic lesions. For example, up to seven distinct SMC clusters with atheroprotective or atherogenic properties are now known, which can adopt myofibroblast-, osteogenic-, or macrophage-like phenotypes.100,101 Initial efforts in this direction are made by some studies,102,103 but more are required to determine which cell types and subtypes are the exact drivers of the disease in which the CAD GWAS loci act.

2.4 Pathophysiological pathways in CAD

The number of common CAD risk alleles a person carries is in hundreds (∼190 sentinel risk variants in the UK Biobank population) without increasing the CAD risk dramatically.104 It is assumed that changes in transcriptional activity of hundreds of genes can be safely tolerated. The addition of just a few extra variants (e.g. 10–20 risk variants), however, results in sharp risk increments, as their effects multiply with each other and with modifiable risk factors such as smoking, ultimately leading to the destabilization of gene regulatory networks and biological pathways across various tissues.104 Researchers have therefore begun to investigate CAD risk genes within a systems biology framework. By leveraging Gene Ontology (GO) annotations for 517 identified causal gene candidates, originating from 299 CAD loci and surpassing a cs threshold of two (refer to Table 1 and Figure 3), we developed a comprehensive map of CAD-associated pathophysiological pathways (Figure 5). In addition to previous articles that reviewed the genetics and biological signalling pathways of CAD in the light of GWAS,10,11,13,15,17,27 this present review extends the list of biological processes that may also contribute to the progression of CAD, including neuronal activity or autophagy. For example, there is evidence that autophagy is closely associated with the progression of atherosclerosis and that enhancing autophagosome activity by inhibiting the mTOR signalling pathway with rapamycin105 or intermittent fasting106 can provide therapeutic benefits to patients at risk.107,108

CAD-causal genes mapped to pathophysiological pathways in atherosclerosis. Genes with a cs >2 were assigned to biological processes using the GO annotations and assignments by a recent review.27 The number of genes is displayed in brackets. For simplification, some GO terms have been combined into one category, e.g. angiogenesis, wound healing, and tissue repair to angiogenesis/tissue repair or ECM organization was assigned to vascular remodelling. Of note, many genes can be involved in multiple biological processes. For example, the ubiquitously expressed endoprotease furin is assigned to lipid metabolism, neuronal activity, vascular remodelling, and signal transduction.
Figure 5

CAD-causal genes mapped to pathophysiological pathways in atherosclerosis. Genes with a cs >2 were assigned to biological processes using the GO annotations and assignments by a recent review.27 The number of genes is displayed in brackets. For simplification, some GO terms have been combined into one category, e.g. angiogenesis, wound healing, and tissue repair to angiogenesis/tissue repair or ECM organization was assigned to vascular remodelling. Of note, many genes can be involved in multiple biological processes. For example, the ubiquitously expressed endoprotease furin is assigned to lipid metabolism, neuronal activity, vascular remodelling, and signal transduction.

2.5 Clinical implications of CAD GWAS findings

2.5.1 Polygenic risk scores for risk prediction

Polygenic risk scores (PRS) use genetic information to predict an individual's risk of developing CAD.109 GWAS allows the comparison of SNPs between individuals with CAD and those without CAD to generate SNP-level association statistics, which are used to compute the PRS. The PRS is trained and validated in an independent cohort of individuals before its application in downstream research and clinical analysis.109–111

CAD PRS can be used for genetic risk prediction and stratification to guide clinical decision making. Individuals in the highest decile of a PRS have almost four-fold higher likelihood of prevalent CAD,7,112 which is similar to that posed by the presence of monogenic mutations for familial hypercholesterolemia. A high PRS in patients presenting with early-onset as well as late-onset MI112 is also independently associated with a higher risk of all-cause mortality.113 Studies have shown that PRS for CAD is close to the risk discrimination for individual clinical risk factors.114 By combining genetic information with classic risk factors, such as sex, age, and lifestyle factors, clinicians can identify individuals at increased CAD risk and tailor prevention strategies accordingly. High PRS may rationalize the selective use of cardiac imaging in asymptomatic individuals for screening and optimizing the timing of preventive therapy. Coronary artery calcium (CAC) score has shown to be strong predictor of intermediate-term CAD risk.115 A high PRS for CAD has been shown to be associated with CAC in younger adults as well as those with traditional risk factors,116 indicating that exposure to CAD risk alleles predisposes to subclinical and clinical atherosclerosis.116

Calculated early in life, PRS for CAD has the potential to provide a strong platform for primary prevention117 and justify the early use of lipid-lowering therapy. PRS determination can help set a baseline lifetime risk trajectory,118 even before the onset of risk factors, that can be utilized to estimate absolute long-term risk.119 In patients already on lipid-lowering therapy, those with high PRS for CAD derived the largest relative and absolute clinical benefit from statin therapy,116,120 which can be enhanced with a PCSK9 monoclonal antibody therapy.121,122 It has also been shown that the knowledge of a high PRS for CAD may enhance motivation to initiate or adhere to risk-reducing intervention.123

There are, however, potential limitations and challenges associated with using PRS, including the lack of approved guidelines, leading to inconsistencies among studies and misinterpretation of results.

Only recently, a protocol for PRS analysis with detailed guidelines has been published to discuss standard quality control and best practices.110

As the predominant focus of the GWAS has been on individuals of European ancestry, the PRS predictions do not work well in non-Europeans. Improving GWAS methods for accommodating diverse populations and using multi-ancestry statistics for constructing the PRS appears to be the way forward.

Lastly, challenges also exist related to ethical considerations such as patient autonomy and privacy. There is potential risk of genetic information and PRS being used against patients in areas such as insurance claims and determining healthcare insurance premium costs.109

2.5.2 Sex matters in CAD

Although CAD is ubiquitous in our society, important sex-related changes in its epidemiology have only recently been evaluated.124–127 CAD affects both men and women and is influenced by a combination of genetic, hormonal, and environmental factors, which result in a unique risk profile and symptom presentation for each sex. The molecular mechanisms that underlie these influences, however, have not been thoroughly investigated and are not well understood.

Many studies on the genetics of CAD are, however, limited by the lack of inclusion of sex chromosomes in the GWAS.128

The X and Y chromosomes contain protein coding genes that govern numerous biological mechanisms. Considering these genes becomes essential when exploring sex differences.

The uneven expression of X-linked genes between women (XX) and men (XY) requires the inactivation of one X chromosome, a process that is tissue- and cell-specific. Approximately 15% of X-linked genes, however, evade this inactivation, leading to a doubling of the gene dosage for these specific genes.129,130 These analytical challenges, especially by the X chromosome, require special computational tools and were excluded in most GWAS to simplify analysis. Out of the 53 studies with available dbGAP genotype data, only 31 included analysis of the X chromosome.128 Notably, none of these included GWAS for CAD until recently by Tcheandjieu et al.90

Research studies on the genetics of CAD were also limited by the inadequate consideration of sex as a variable in targeted genetic analyses and insufficient examination of hormone-gene interactions. Women are generally underrepresented in the preclinical, clinical cardiovascular research131–134 and in CAD GWAS.135,136 Women GWAS suffers from weaker statistical power and smaller effect sizes.7 There is also an element of misclassification of women in CAD due to the difference in the presentation of CAD in men and women. In contrast to men, who typically exhibit obstructive CAD, women often manifest non-obstructive CAD. This difference in presentation can lead to misclassification, particularly in studies that use obstructive CAD as an outcome, as women may be incorrectly categorized as controls.137,138

Recently, a GWAS meta-analysis was conducted using 181 522 cases of CAD (32% women vs. 68% men) and 1 165 690 controls (53% women vs. 47% men).7

A sex stratified GWAS involving a smaller subset of studies, with 77 080 cases (30% women vs. 70% men) and 550 952 controls (56% women vs. 44% men), identified 10 variants out of 241 conditionally independent associations with CAD that exhibited a differential effect between sexes.

Among the variants examined, only rs7696877 (MYOZ2) had a more pronounced effect in women than in men. Nine variants, including rs9521672 (COL4A1), rs4977574 (CDKN2B-AS1), rs12740374 (CELSR2), rs11225975 (MIR4693), rs112422902 (PVRL2), rs149722146 (EDNRA), rs186399184 (ICA1L), rs28451064 (NCRNA00310), and rs190352900 (RAPH1), had a greater impact on men. In the same line, Tcheandjieu et al. used 243 392 cases and 849 686 controls (<10% women) and identified 9 loci associated with CAD that are located on chromosome X (see Table 1). With the overrepresentation of men in this GWAS, this study signifies X-chromosomal contribution to CAD.90

Dungan et al. performed a sex stratified GWAS analysis on incident mortality in patients with CAD (25.4% women vs. 74.6% men).139 This study revealed eight variants that were shown to confer increased mortality risk in men: rs2076780 (GREM2/RGS7), rs11252040 (LOC105376360), rs17103766 (BRMS1L/LINC00609), rs2062640 (UNC13C/LOC105370829), rs2835913 (KCNJ6), rs4776247 (UNC13C/LOC105370829), rs12150051 (LINC00670), and rs9932462 (EMP2/TEKT5); while 15 variants showed sex-specific risk in women: rs8133010 (PDE9A), rs12145981 (LPGAT1), rs10494195 (LOC101929099), rs12145981 (LOC91548/LPGAT1), rs17591646 (SLC9A9), rs8021816 (PRKD1), rs26445 (LOC102546299/LINC01947), rs7217169 (RAP1GAP2), rs9388813 (TMEM200A/SMLR1), rs10923243 (VTCN1/LINC01525), rs1751291 (LINC00703/MANCR), rs10768256 (C11orf74/LINC02760), rs7320901 (LINC00457/NBEA), rs17051660 (LINC00457/NBEA), and rs9599764 (LINC00457/NBEA).

Although the genetic variants identified through sex-specific analysis show involvement in endothelial dysfunction, lipid metabolism, vascular remodelling, and thrombosis, the genetic underpinning of these sex differences in CAD is not completely understood. Large sex stratified GWAS, with appropriate study design, adequate sample size, and equal participation of men and women, can be critical in translating these genetic signals into specific disease pathways.

2.5.3 GWAS need more ethnic diversity

Despite the success of GWAS in identifying genetic variants associated with CAD, the majority of these studies from the CARDIoGRAMplusC4D 1M+ Hearts project (https://www.phpc.cam.ac.uk/ceu/1m-hearts-study/), UK Biobank,140 and Million Veteran Program (MVP)8 have primarily focused on people of European descent.

In 2007, it was estimated that the GWAS samples for CAD lacked non-European ancestry. By 2022, the percentage had, however, increased to 29%, with most of the increase attributed to people of East Asian origin rather than people from Africa, South Asia, Latin America, South America, the Middle East, and the Pacific Islands.14 One of the advantages of CAD GWAS for non-Europeans is that if certain genetic variants are uncommon or absent, it may reveal significant effects on the disease that may not be apparent in European studies.141,142 However, it is important to note that the associations between genotype and phenotype discovered in Europeans may not be equally relevant or significant in non-European populations.14 In particular, the accuracy of PRS relies on the genetic background of the population.143,144

Thanks to genotyping technologies, analytic methods, and more attention to underrepresented populations, by 2012, we started to see GWAS for CAD in other ethnic groups, such as Han Chinese145 and Japanese.146 In 2020, another CAD GWAS was conducted on the Japanese population, which revealed eight novel loci.9

To overcome the limitation of ethnicity, Tcheandjieu et al. conducted the first, large-scale, multi-population GWAS using data from White, Black, and Hispanic cohorts from the MVP. This analysis identified 95 novel loci and detected eight loci of genome-wide significance exclusively in Black or Hispanic individuals.90 Interestingly, this multi-population GWAS demonstrated that two common haplotypes at the 9p21 locus contributed to risk stratification across all populations except those of African origin, where these haplotypes are virtually absent. This observation even after a two-stage meta-analysis involves >27 000 and >12 100 CAD cases.90 In addition, Lettre et al. reported that the index SNP rs6475606 in 9p21 was also insignificant (P = 6.4 × 10−4) in a meta-analysis of multiple African American cohorts.147

Conducting GWAS on diverse ethnicities can address health disparities disproportionately affecting certain ethnic groups. For example, African Americans and Hispanics are at a higher risk of developing CAD than other ethnic groups.148,149 We can identify potential genetic factors contributing to this increased risk, which may ultimately lead to the development of more effective, personalized, and targeted interventions.

2.5.4 GWAS guided drug development

Since preclinical compounds are twice as likely to succeed if there is genetic evidence, findings from GWAS can inform drug discovery.150 GWAS have proven useful in identifying disease-associated genes and pathways to guide drug development10–12 (Figure 6A).

CAD risk genes as potential therapeutic target. (A) Classification of risk genes as potential drug targets for CAD derived from the therapeutic target database.151 The higher the cs, which represents the level of evidence of causality, the more likely it is to identify a drug target that interacts with drugs approved by the U.S. Food and Drug Administration (FDA). (B) Approved targets encoded by genes that impact CAD risk and CAD-associated pathomechanisms such as hypercholesterolemia. cs are shown in superscript (*). Some drug targets were also identified in large-scale array-based and deep-sequencing projects (#).10 (C) Exemplary drug targets that can be (re)used for new therapeutic strategies. Some drug targets encoded by CAD risk gene (cs ≥ 5) are already tested in animal models or clinical trials (phase in parentheses) for CAD-related indications, others interact with FDA-approved drugs prescribed today for other diseases (shown in grey), or were not yet recognized as clinical drug targets (middle panel, cs ≥ 10). According to the Drug-Gene Interaction Database (https://www.dgidb.org/), almost all these genes are druggable or clinically actionable (except RAB23, SNF8, and TCF21). A fourth strategy may involve targeting multiple components of CAD-relevant signalling pathways, e.g. through antisense RNAs. The larger the font size, the more CAD risk candidate genes are part of the signalling pathway. The word cloud was created from GO annotations of CAD risk genes (cs ≥ 3) using the python package wordcloud (pypi.org/project/wordcloud/). Details of drug targets can be found in Supplementary material online, Tables S4 and S5.
Figure 6

CAD risk genes as potential therapeutic target. (A) Classification of risk genes as potential drug targets for CAD derived from the therapeutic target database.151 The higher the cs, which represents the level of evidence of causality, the more likely it is to identify a drug target that interacts with drugs approved by the U.S. Food and Drug Administration (FDA). (B) Approved targets encoded by genes that impact CAD risk and CAD-associated pathomechanisms such as hypercholesterolemia. cs are shown in superscript (*). Some drug targets were also identified in large-scale array-based and deep-sequencing projects (#).10 (C) Exemplary drug targets that can be (re)used for new therapeutic strategies. Some drug targets encoded by CAD risk gene (cs ≥ 5) are already tested in animal models or clinical trials (phase in parentheses) for CAD-related indications, others interact with FDA-approved drugs prescribed today for other diseases (shown in grey), or were not yet recognized as clinical drug targets (middle panel, cs ≥ 10). According to the Drug-Gene Interaction Database (https://www.dgidb.org/), almost all these genes are druggable or clinically actionable (except RAB23, SNF8, and TCF21). A fourth strategy may involve targeting multiple components of CAD-relevant signalling pathways, e.g. through antisense RNAs. The larger the font size, the more CAD risk candidate genes are part of the signalling pathway. The word cloud was created from GO annotations of CAD risk genes (cs ≥ 3) using the python package wordcloud (pypi.org/project/wordcloud/). Details of drug targets can be found in Supplementary material online, Tables S4 and S5.

Lowering the blood LDL cholesterol level is considered an effective method for primary prevention of arteriosclerosis.152 Unsurprisingly, the use of statins, a class of drugs also known as 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, increased by ∼25% worldwide from 2015 to 2020.153 Inspired by the LDL-lowering nature of loss-of-function variants of PCSK9,46 inhibition of PCSK9 became a promising therapeutic strategy for aggressive LDL-lowering in high-risk patients with atherosclerotic cardiovascular disease using antibodies, vaccines, siRNAs, or gene editing,121,122 which is associated with a safety profile superior to that of other classes of LDL-lowering drugs.46 Moreover, gain-of-function mutations in PCSK9, which cause familial hypercholesterolemia and CAD,154–157 serve as one of the best examples of how genetic insights can be used as a powerful tool to develop new drug targets. Other examples of therapeutic targets (e.g. PDE5A for hypertension) that deep-sequencing and/or GWAS have identified are given in Figure 6B. Guided by GWAS outcomes, other therapeutic targets could also be clinically relevant in the near future, including inflammation152 or intimal hyperplasia.158

Progress is being made in the treatment of in-stent restenosis, which involves migration and proliferation of vascular SMCs. Several drug targets genetically associated with CAD are serving as targets in clinical trials [e.g. transforming growth factor B1 (TGFB1)/TGFB1 receptor159] or are about to enter clinical trials (e.g. ADAMTS7160) (Figure 6C and Supplementary material online, Table S4). Since lower ADAMST7 activity has been linked to less SMC-mediated neointima formation, lower burden of vessel calcification, and more stable plaques,52,55 inhibiting ADAMTS7 is considered a novel non-lipid therapy against cardiovascular diseases. GWAS findings can also inform repurposing of approved drugs. One example is IL6R which is causally linked to CAD and other common vascular diseases.13 The human monoclonal antibody tocilizumab (DrugBank ID: DB06273), which targets the IL6R and is approved for treatment of rheumatoid arthritis, has been investigated in a clinical trial in patients with MI (ClinicalTrials.gov: NCT01491074, phase II). Another IL6 antagonist, ziltivekimab, has been evaluated in patients at high atherosclerotic risk with moderate to severe chronic kidney disease and high-sensitivity C-reactive protein (CRP) of at least 2 mg/L (ClinicalTrials.gov: NCT03926117, phase II). The subcutaneous administration of ziltivekimab markedly reduced high-sensitivity CRP by up to ∼90% and led to the reduction of other pro-inflammatory biomarkers in dose-dependent manner.161 Finally, recent CAD GWAS meta-analyses revealed most likely causal genes that are not currently recognized as drug targets, but are part of signalling pathways, modulation of which may be beneficial in reducing CAD risk, e.g. TGFB signalling pathway (Figure 6C).

3. Future directions and expectations

Hundreds of genetic variants associated with CAD have been identified through GWAS3,6–9,90,146 but distinguishing between causative genetic variants and those merely associated with a disease is a major challenge. Advances in statistical genetics and causal inference methods are expected to improve our ability to identify the causal genetic variants that contribute to CAD. Integrating data from multiple omics technologies, including epigenomics, transcriptomics, proteomics, metabolomics, and the microbiome, can provide a more comprehensive understanding of the biological mechanisms underlying genetic associations with CAD. Integration of large-scale clinical data, such as electronic health records, can provide insights into the clinical features and outcomes of CAD, which can help refine our understanding of the genetic basis of the disease and improve treatment strategies.

In summary, CAD GWAS have provided important insights into the genetic architecture of CAD and will likely bring many exciting developments that can lead to more personalized and effective therapies for the disease and improve our ability to prevent, diagnose, and treat CAD.

Supplementary material

Supplementary material is available at Cardiovascular Research online. The data underlying this article are available in the article and/or can be downloaded from the sources listed in Table 3.

Acknowledgement

This work is dedicated to the memory of Jeanette Erdmann, who passed away on 9 July 2023, before the publication of this paper. She was a remarkable researcher and a compassionate mentor who had a significant impact on the research field. Her dedication, professionalism, and distinctive approach will always be remembered and treasured.

Funding

R.A. was supported by an Postdoctoral Fellowship by American Heart Association 18POST33990046, the University of Eastern Finland (Researcher Fellowship), the Finnish Foundation for Cardiovascular Research, German Centre for Cardiovascular Research (DZHK, FKZ81Z0700108, FKZ81X2700133), the Junior Investigator Award from Leducq Foundation (18CVD02, PlaqOmics, R.A., and T.R.), the Junior Research Cardiovascular Diseases Grant of the CORONA Foundation (Corona-Stiftung) (S0199/10097/2023 to R.A.), and German Research Foundation (DFG) (528455242 and 515637292 to R.A.).

Data availability

All data are incorporated into the article and its online supplementary material.

References

1

GBD 2013 Mortality and Causes of Death Collaborators
.
Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013
.
Lancet
 
2015
;
385
:
117
171
.

2

McPherson
 
R
,
Tybjaerg-Hansen
 
A
.
Genetics of coronary artery disease
.
Circ Res
 
2016
;
118
:
564
578
.

3

Wellcome Trust Case Control Consortium
.
Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls
.
Nature
 
2007
;
447
:
661
678
.

4

McPherson
 
R
,
Pertsemlidis
 
A
,
Kavaslar
 
N
,
Stewart
 
A
,
Roberts
 
R
,
Cox
 
DR
,
Hinds
 
DA
,
Pennacchio
 
LA
,
Tybjaerg-Hansen
 
A
,
Folsom
 
AR
,
Boerwinkle
 
E
,
Hobbs
 
HH
,
Cohen
 
JC
.
A common allele on chromosome 9 associated with coronary heart disease
.
Science
 
2007
;
316
:
1488
1491
.

5

Helgadottir
 
A
,
Thorleifsson
 
G
,
Manolescu
 
A
,
Gretarsdottir
 
S
,
Blondal
 
T
,
Jonasdottir
 
A
,
Jonasdottir
 
A
,
Sigurdsson
 
A
,
Baker
 
A
,
Palsson
 
A
,
Masson
 
G
,
Gudbjartsson
 
DF
,
Magnusson
 
KP
,
Andersen
 
K
,
Levey
 
AI
,
Backman
 
VM
,
Matthiasdottir
 
S
,
Jonsdottir
 
T
,
Palsson
 
S
,
Einarsdottir
 
H
,
Gunnarsdottir
 
S
,
Gylfason
 
A
,
Vaccarino
 
V
,
Hooper
 
WC
,
Reilly
 
MP
,
Granger
 
CB
,
Austin
 
H
,
Rader
 
DJ
,
Shah
 
SH
,
Quyyumi
 
AA
,
Gulcher
 
JR
,
Thorgeirsson
 
G
,
Thorsteinsdottir
 
U
,
Kong
 
A
,
Stefansson
 
K
.
A common variant on chromosome 9p21 affects the risk of myocardial infarction
.
Science
 
2007
;
316
:
1491
1493
.

6

van der Harst
 
P
,
Verweij
 
N
.
Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease
.
Circ Res
 
2018
;
122
:
433
443
.

7

Aragam
 
KG
,
Jiang
 
T
,
Goel
 
A
,
Kanoni
 
S
,
Wolford
 
BN
,
Atri
 
DS
,
Weeks
 
EM
,
Wang
 
M
,
Hindy
 
G
,
Zhou
 
W
,
Grace
 
C
,
Roselli
 
C
,
Marston
 
NA
,
Kamanu
 
FK
,
Surakka
 
I
,
Venegas
 
LM
,
Sherliker
 
P
,
Koyama
 
S
,
Ishigaki
 
K
,
Asvold
 
BO
,
Brown
 
MR
,
Brumpton
 
B
,
de Vries
 
PS
,
Giannakopoulou
 
O
,
Giardoglou
 
P
,
Gudbjartsson
 
DF
,
Guldener
 
U
,
Haider
 
SMI
,
Helgadottir
 
A
,
Ibrahim
 
M
,
Kastrati
 
A
,
Kessler
 
T
,
Kyriakou
 
T
,
Konopka
 
T
,
Li
 
L
,
Ma
 
L
,
Meitinger
 
T
,
Mucha
 
S
,
Munz
 
M
,
Murgia
 
F
,
Nielsen
 
JB
,
Nothen
 
MM
,
Pang
 
S
,
Reinberger
 
T
,
Schnitzler
 
G
,
Smedley
 
D
,
Thorleifsson
 
G
,
von Scheidt
 
M
,
Ulirsch
 
JC
,
Biobank Japan, EPIC-CVD
,
Arnar
 
DO
,
Burtt
 
NP
,
Costanzo
 
MC
,
Flannick
 
J
,
Ito
 
K
,
Jang
 
DK
,
Kamatani
 
Y
,
Khera
 
AV
,
Komuro
 
I
,
Kullo
 
IJ
,
Lotta
 
LA
,
Nelson
 
CP
,
Roberts
 
R
,
Thorgeirsson
 
G
,
Thorsteinsdottir
 
U
,
Webb
 
TR
,
Baras
 
A
,
Bjorkegren
 
JLM
,
Boerwinkle
 
E
,
Dedoussis
 
G
,
Holm
 
H
,
Hveem
 
K
,
Melander
 
O
,
Morrison
 
AC
,
Orho-Melander
 
M
,
Rallidis
 
LS
,
Ruusalepp
 
A
,
Sabatine
 
MS
,
Stefansson
 
K
,
Zalloua
 
P
,
Ellinor
 
PT
,
Farrall
 
M
,
Danesh
 
J
,
Ruff
 
CT
,
Finucane
 
HK
,
Hopewell
 
JC
,
Clarke
 
R
,
Gupta
 
RM
,
Erdmann
 
J
,
Samani
 
NJ
,
Schunkert
 
H
,
Watkins
 
H
,
Willer
 
CJ
,
Deloukas
 
P
,
Kathiresan
 
S
,
Butterworth
 
AS
,
CARDIoGRAMplusC4D Consortium
.
Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants
.
Nat Genet
 
2022
;
54
:
1803
1815
.

8

Gaziano
 
JM
,
Concato
 
J
,
Brophy
 
M
,
Fiore
 
L
,
Pyarajan
 
S
,
Breeling
 
J
,
Whitbourne
 
S
,
Deen
 
J
,
Shannon
 
C
,
Humphries
 
D
,
Guarino
 
P
,
Aslan
 
M
,
Anderson
 
D
,
LaFleur
 
R
,
Hammond
 
T
,
Schaa
 
K
,
Moser
 
J
,
Huang
 
G
,
Muralidhar
 
S
,
Przygodzki
 
R
,
O'Leary
 
TJ
.
Million Veteran Program: a mega-biobank to study genetic influences on health and disease
.
J Clin Epidemiol
 
2016
;
70
:
214
223
.

9

Koyama
 
S
,
Ito
 
K
,
Terao
 
C
,
Akiyama
 
M
,
Horikoshi
 
M
,
Momozawa
 
Y
,
Matsunaga
 
H
,
Ieki
 
H
,
Ozaki
 
K
,
Onouchi
 
Y
,
Takahashi
 
A
,
Nomura
 
S
,
Morita
 
H
,
Akazawa
 
H
,
Kim
 
C
,
Seo
 
JS
,
Higasa
 
K
,
Iwasaki
 
M
,
Yamaji
 
T
,
Sawada
 
N
,
Tsugane
 
S
,
Koyama
 
T
,
Ikezaki
 
H
,
Takashima
 
N
,
Tanaka
 
K
,
Arisawa
 
K
,
Kuriki
 
K
,
Naito
 
M
,
Wakai
 
K
,
Suna
 
S
,
Sakata
 
Y
,
Sato
 
H
,
Hori
 
M
,
Sakata
 
Y
,
Matsuda
 
K
,
Murakami
 
Y
,
Aburatani
 
H
,
Kubo
 
M
,
Matsuda
 
F
,
Kamatani
 
Y
,
Komuro
 
I
.
Population-specific and trans-ancestry genome-wide analyses identify distinct and shared genetic risk loci for coronary artery disease
.
Nat Genet
 
2020
;
52
:
1169
1177
.

10

Erdmann
 
J
,
Kessler
 
T
,
Munoz Venegas
 
L
,
Schunkert
 
H
.
A decade of genome-wide association studies for coronary artery disease: the challenges ahead
.
Cardiovasc Res
 
2018
;
114
:
1241
1257
.

11

Kessler
 
T
,
Schunkert
 
H
.
Coronary artery disease genetics enlightened by genome-wide association studies
.
JACC Basic Transl Sci
 
2021
;
6
:
610
623
.

12

Khera
 
AV
,
Kathiresan
 
S
.
Genetics of coronary artery disease: discovery, biology and clinical translation
.
Nat Rev Genet
 
2017
;
18
:
331
344
.

13

Miller
 
CL
,
Kontorovich
 
AR
,
Hao
 
K
,
Ma
 
L
,
Iyegbe
 
C
,
Bjorkegren
 
JLM
,
Kovacic
 
JC
.
Precision medicine approaches to vascular disease: JACC Focus Seminar 2/5
.
J Am Coll Cardiol
 
2021
;
77
:
2531
2550
.

14

Musunuru
 
K
,
Kathiresan
 
S
.
Genetics of common, complex coronary artery disease
.
Cell
 
2019
;
177
:
132
145
.

15

Schunkert
 
H
,
von Scheidt
 
M
,
Kessler
 
T
,
Stiller
 
B
,
Zeng
 
L
,
Vilne
 
B
.
Genetics of coronary artery disease in the light of genome-wide association studies
.
Clin Res Cardiol
 
2018
;
107
:
2
9
.

16

Vilne
 
B
,
Schunkert
 
H
.
Integrating genes affecting coronary artery disease in functional networks by multi-OMICs approach
.
Front Cardiovasc Med
 
2018
;
5
:
89
.

17

Rodriguez
 
ML
,
Arasu
 
UT
,
Kaikkonen
 
MU
.
Exploring the genetic basis of coronary artery disease using functional genomics
.
Atherosclerosis
 
2023
;
374
:
87
98
.

18

McLaren
 
W
,
Gil
 
L
,
Hunt
 
SE
,
Riat
 
HS
,
Ritchie
 
GR
,
Thormann
 
A
,
Flicek
 
P
,
Cunningham
 
F
.
The ensembl variant effect predictor
.
Genome Biol
 
2016
;
17
:
122
.

19

Hutchinson
 
A
,
Asimit
 
J
,
Wallace
 
C
.
Fine-mapping genetic associations
.
Hum Mol Genet
 
2020
;
29
:
R81
R88
.

20

Burgess
 
DJ
.
Fine-mapping causal variants—why finding ‘the one’ can be futile
.
Nat Rev Genet
 
2022
;
23
:
261
.

21

Abell
 
NS
,
DeGorter
 
MK
,
Gloudemans
 
MJ
,
Greenwald
 
E
,
Smith
 
KS
,
He
 
Z
,
Montgomery
 
SB
.
Multiple causal variants underlie genetic associations in humans
.
Science
 
2022
;
375
:
1247
1254
.

22

Zhao
 
G
,
Yang
 
W
,
Wu
 
J
,
Chen
 
B
,
Yang
 
X
,
Chen
 
J
,
McVey
 
DG
,
Andreadi
 
C
,
Gong
 
P
,
Webb
 
TR
,
Samani
 
NJ
,
Ye
 
S
.
Influence of a coronary artery disease-associated genetic variant on FURIN expression and effect of furin on macrophage behavior
.
Arterioscler Thromb Vasc Biol
 
2018
;
38
:
1837
1844
.

23

Karamanavi
 
E
,
McVey
 
DG
,
van der Laan
 
SW
,
Stanczyk
 
PJ
,
Morris
 
GE
,
Wang
 
Y
,
Yang
 
W
,
Chan
 
K
,
Poston
 
RN
,
Luo
 
J
,
Zhou
 
X
,
Gong
 
P
,
Jones
 
PD
,
Cao
 
J
,
Kostogrys
 
RB
,
Webb
 
TR
,
Pasterkamp
 
G
,
Yu
 
H
,
Xiao
 
Q
,
Greer
 
PA
,
Stringer
 
EJ
,
Samani
 
NJ
,
Ye
 
S
.
The FES gene at the 15q26 coronary-artery-disease locus inhibits atherosclerosis
.
Circ Res
 
2022
;
131
:
1004
1017
.

24

Kessler
 
T
,
Wobst
 
J
,
Wolf
 
B
,
Eckhold
 
J
,
Vilne
 
B
,
Hollstein
 
R
,
von Ameln
 
S
,
Dang
 
TA
,
Sager
 
HB
,
Moritz Rumpf
 
P
,
Aherrahrou
 
R
,
Kastrati
 
A
,
Bjorkegren
 
JLM
,
Erdmann
 
J
,
Lusis
 
AJ
,
Civelek
 
M
,
Kaiser
 
FJ
,
Schunkert
 
H
.
Functional characterization of the GUCY1A3 coronary artery disease risk locus
.
Circulation
 
2017
;
136
:
476
489
.

25

ENCODE Project Consortium
,
Moore
 
JE
,
Purcaro
 
MJ
,
Pratt
 
HE
,
Epstein
 
CB
,
Shoresh
 
N
,
Adrian
 
J
,
Kawli
 
T
,
Davis
 
CA
,
Dobin
 
A
,
Kaul
 
R
,
Halow
 
J
,
Van Nostrand
 
EL
,
Freese
 
P
,
Gorkin
 
DU
,
Shen
 
Y
,
He
 
Y
,
Mackiewicz
 
M
,
Pauli-Behn
 
F
,
Williams
 
BA
,
Mortazavi
 
A
,
Keller
 
CA
,
Zhang
 
XO
,
Elhajjajy
 
SI
,
Huey
 
J
,
Dickel
 
DE
,
Snetkova
 
V
,
Wei
 
X
,
Wang
 
X
,
Rivera-Mulia
 
JC
,
Rozowsky
 
J
,
Zhang
 
J
,
Chhetri
 
SB
,
Zhang
 
J
,
Victorsen
 
A
,
White
 
KP
,
Visel
 
A
,
Yeo
 
GW
,
Burge
 
CB
,
Lecuyer
 
E
,
Gilbert
 
DM
,
Dekker
 
J
,
Rinn
 
J
,
Mendenhall
 
EM
,
Ecker
 
JR
,
Kellis
 
M
,
Klein
 
RJ
,
Noble
 
WS
,
Kundaje
 
A
,
Guigo
 
R
,
Farnham
 
PJ
,
Cherry
 
JM
,
Myers
 
RM
,
Ren
 
B
,
Graveley
 
BR
,
Gerstein
 
MB
,
Pennacchio
 
LA
,
Snyder
 
MP
,
Bernstein
 
BE
,
Wold
 
B
,
Hardison
 
RC
,
Gingeras
 
TR
,
Stamatoyannopoulos
 
JA
,
Weng
 
Z
.
Expanded encyclopaedias of DNA elements in the human and mouse genomes
.
Nature
 
2020
;
583
:
699
710
.

26

Boyle
 
AP
,
Hong
 
EL
,
Hariharan
 
M
,
Cheng
 
Y
,
Schaub
 
MA
,
Kasowski
 
M
,
Karczewski
 
KJ
,
Park
 
J
,
Hitz
 
BC
,
Weng
 
S
,
Cherry
 
JM
,
Snyder
 
M
.
Annotation of functional variation in personal genomes using RegulomeDB
.
Genome Res
 
2012
;
22
:
1790
1797
.

27

Chen
 
Z
,
Schunkert
 
H
.
Genetics of coronary artery disease in the post-GWAS era
.
J Intern Med
 
2021
;
290
:
980
992
.

28

Zhao
 
Q
,
Dacre
 
M
,
Nguyen
 
T
,
Pjanic
 
M
,
Liu
 
B
,
Iyer
 
D
,
Cheng
 
P
,
Wirka
 
R
,
Kim
 
JB
,
Fraser
 
HB
,
Quertermous
 
T
.
Molecular mechanisms of coronary disease revealed using quantitative trait loci for TCF21 binding, chromatin accessibility, and chromosomal looping
.
Genome Biol
 
2020
;
21
:
135
.

29

Turner
 
AW
,
Martinuk
 
A
,
Silva
 
A
,
Lau
 
P
,
Nikpay
 
M
,
Eriksson
 
P
,
Folkersen
 
L
,
Perisic
 
L
,
Hedin
 
U
,
Soubeyrand
 
S
,
McPherson
 
R
.
Functional analysis of a novel genome-wide association study signal in SMAD3 that confers protection from coronary artery disease
.
Arterioscler Thromb Vasc Biol
 
2016
;
36
:
972
983
.

30

Toropainen
 
A
,
Stolze
 
LK
,
Ord
 
T
,
Whalen
 
MB
,
Torrell
 
PM
,
Link
 
VM
,
Kaikkonen
 
MU
,
Romanoski
 
CE
.
Functional noncoding SNPs in human endothelial cells fine-map vascular trait associations
.
Genome Res
 
2022
;
32
:
409
424
.

31

Song
 
Y
,
Ma
 
R
,
Zhang
 
H
.
The influence of MRAS gene variants on ischemic stroke and serum lipid levels in Chinese Han population
.
Medicine (Baltimore)
 
2019
;
98
:
e18065
.

32

Haas
 
U
,
Sczakiel
 
G
,
Laufer
 
SD
.
MicroRNA-mediated regulation of gene expression is affected by disease-associated SNPs within the 3'-UTR via altered RNA structure
.
RNA Biol
 
2012
;
9
:
924
937
.

33

Li
 
Q
,
Gloudemans
 
MJ
,
Geisinger
 
JM
,
Fan
 
B
,
Aguet
 
F
,
Sun
 
T
,
Ramaswami
 
G
,
Li
 
YI
,
Ma
 
JB
,
Pritchard
 
JK
,
Montgomery
 
SB
,
Li
 
JB
.
RNA editing underlies genetic risk of common inflammatory diseases
.
Nature
 
2022
;
608
:
569
577
.

34

Li
 
R
,
Zhang
 
H
,
Tang
 
F
,
Duan
 
C
,
Liu
 
D
,
Wu
 
N
,
Zhang
 
Y
,
Wang
 
L
,
Mo
 
X
.
Coronary artery disease risk factors affected by RNA modification-related genetic variants
.
Front Cardiovasc Med
 
2022
;
9
:
985121
.

35

Hasimbegovic
 
E
,
Schweiger
 
V
,
Kastner
 
N
,
Spannbauer
 
A
,
Traxler
 
D
,
Lukovic
 
D
,
Gyongyosi
 
M
,
Mester-Tonczar
 
J
.
Alternative splicing in cardiovascular disease—a survey of recent findings
.
Genes (Basel)
 
2021
;
12
:
1457
.

36

Kulseth
 
MA
,
Berge
 
KE
,
Bogsrud
 
MP
,
Leren
 
TP
.
Analysis of LDLR mRNA in patients with familial hypercholesterolemia revealed a novel mutation in intron 14, which activates a cryptic splice site
.
J Hum Genet
 
2010
;
55
:
676
680
.

37

Reeskamp
 
LF
,
Hartgers
 
ML
,
Peter
 
J
,
Dallinga-Thie
 
GM
,
Zuurbier
 
L
,
Defesche
 
JC
,
Grefhorst
 
A
,
Hovingh
 
GK
.
A deep intronic variant in LDLR in familial hypercholesterolemia
.
Circ Genom Precis Med
 
2018
;
11
:
e002385
.

38

Wang
 
L
,
Xu
 
G-E
,
Spanos
 
M
,
Li
 
G
,
Lei
 
Z
,
Sluijter
 
JPG
,
Xiao
 
J
.
Circular RNAs in cardiovascular diseases: regulation and therapeutic applications
.
Research (Wash DC)
 
2023
;
6
:
0038
.

39

Mi
 
Z
,
Zhongqiang
 
C
,
Caiyun
 
J
,
Yanan
 
L
,
Jianhua
 
W
,
Liang
 
L
.
Circular RNA detection methods: a minireview
.
Talanta
 
2022
;
238
:
123066
.

40

Szabo
 
L
,
Salzman
 
J
.
Detecting circular RNAs: bioinformatic and experimental challenges
.
Nat Rev Genet
 
2016
;
17
:
679
692
.

41

Long
 
Q
,
Lv
 
B
,
Jiang
 
S
,
Lin
 
J
.
The landscape of circular RNAs in cardiovascular diseases
.
Int J Mol Sci
 
2023
;
24
:
4571
.

42

Zhang
 
S
,
Wang
 
W
,
Wu
 
X
,
Zhou
 
X
.
Regulatory roles of circular RNAs in coronary artery disease
.
Mol Ther Nucleic Acids
 
2020
;
21
:
172
179
.

43

Holdt
 
LM
,
Stahringer
 
A
,
Sass
 
K
,
Pichler
 
G
,
Kulak
 
NA
,
Wilfert
 
W
,
Kohlmaier
 
A
,
Herbst
 
A
,
Northoff
 
BH
,
Nicolaou
 
A
,
Gabel
 
G
,
Beutner
 
F
,
Scholz
 
M
,
Thiery
 
J
,
Musunuru
 
K
,
Krohn
 
K
,
Mann
 
M
,
Teupser
 
D
.
Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans
.
Nat Commun
 
2016
;
7
:
12429
.

44

Fadista
 
J
,
Oskolkov
 
N
,
Hansson
 
O
,
Groop
 
L
.
Loftool: a gene intolerance score based on loss-of-function variants in 60 706 individuals
.
Bioinformatics
 
2017
;
33
:
471
474
.

45

Cheng
 
J
,
Novati
 
G
,
Pan
 
J
,
Bycroft
 
C
,
Zemgulyte
 
A
,
Applebaum
 
T
,
Pritzel
 
A
,
Wong
 
LH
,
Zielinski
 
M
,
Sargeant
 
T
,
Schneider
 
RG
,
Senior
 
AW
,
Jumper
 
J
,
Hassabis
 
D
,
Kohli
 
P
,
Avsec
 
Z
.
Accurate proteome-wide missense variant effect prediction with AlphaMissense
.
Science
 
2023
;
381
:
eadg7492
.

46

Rosenson
 
RS
,
Hegele
 
RA
,
Koenig
 
W
.
Cholesterol-lowering agents
.
Circ Res
 
2019
;
124
:
364
385
.

47

Jones
 
PD
,
Kaiser
 
MA
,
Ghaderi Najafabadi
 
M
,
McVey
 
DG
,
Beveridge
 
AJ
,
Schofield
 
CL
,
Samani
 
NJ
,
Webb
 
TR
.
The coronary artery disease-associated coding variant in zinc finger C3HC-type containing 1 (ZC3HC1) affects cell cycle regulation
.
J Biol Chem
 
2016
;
291
:
16318
16327
.

48

Zeng
 
Z
,
Bromberg
 
Y
.
Predicting functional effects of synonymous variants: a systematic review and perspectives
.
Front Genet
 
2019
;
10
:
914
.

49

Lenz
 
S
,
Sinn
 
LR
,
O'Reilly
 
FJ
,
Fischer
 
L
,
Wegner
 
F
,
Rappsilber
 
J
.
Reliable identification of protein–protein interactions by crosslinking mass spectrometry
.
Nat Commun
 
2021
;
12
:
3564
.

50

Miura
 
K
.
An overview of current methods to confirm protein–protein interactions
.
Protein Pept Lett
 
2018
;
25
:
728
733
.

51

Somerville
 
RP
,
Longpre
 
J-M
,
Apel
 
ED
,
Lewis
 
RM
,
Wang
 
LW
,
Sanes
 
JR
,
Leduc
 
R
,
Apte
 
SS
.
ADAMTS7B, the full-length product of the ADAMTS7 gene, is a chondroitin sulfate proteoglycan containing a mucin domain
.
J Biol Chem
 
2004
;
279
:
35159
35175
.

52

Patel
 
RS
,
Ye
 
S
.
ADAMTS7: a promising new therapeutic target in coronary heart disease
.
Expert Opin Ther Targets
 
2013
;
17
:
863
867
.

53

Guo
 
F
,
Lai
 
Y
,
Tian
 
Q
,
Lin
 
EA
,
Kong
 
L
,
Liu
 
C
.
Granulin-epithelin precursor binds directly to ADAMTS-7 and ADAMTS-12 and inhibits their degradation of cartilage oligomeric matrix protein
.
Arthritis Rheum
 
2010
;
62
:
2023
2036
.

54

Kessler
 
T
,
Zhang
 
L
,
Liu
 
Z
,
Yin
 
X
,
Huang
 
Y
,
Wang
 
Y
,
Fu
 
Y
,
Mayr
 
M
,
Ge
 
Q
,
Xu
 
Q
,
Zhu
 
Y
,
Wang
 
X
,
Schmidt
 
K
,
de Wit
 
C
,
Erdmann
 
J
,
Schunkert
 
H
,
Aherrahrou
 
Z
,
Kong
 
W
.
ADAMTS-7 inhibits re-endothelialization of injured arteries and promotes vascular remodeling through cleavage of thrombospondin-1
.
Circulation
 
2015
;
131
:
1191
1201
.

55

Sharifi
 
MA
,
Wierer
 
M
,
Dang
 
TA
,
Milic
 
J
,
Moggio
 
A
,
Sachs
 
N
,
von Scheidt
 
M
,
Hinterdobler
 
J
,
Muller
 
P
,
Werner
 
J
,
Stiller
 
B
,
Aherrahrou
 
Z
,
Erdmann
 
J
,
Zaliani
 
A
,
Graettinger
 
M
,
Reinshagen
 
J
,
Gul
 
S
,
Gribbon
 
P
,
Maegdefessel
 
L
,
Bernhagen
 
J
,
Sager
 
HB
,
Mann
 
M
,
Schunkert
 
H
,
Kessler
 
T
.
ADAMTS-7 modulates atherosclerotic plaque formation by degradation of TIMP-1
.
Circ Res
 
2023
;
133
:
674
686
.

56

Winkler
 
MJ
,
Muller
 
P
,
Sharifi
 
AM
,
Wobst
 
J
,
Winter
 
H
,
Mokry
 
M
,
Ma
 
L
,
van der Laan
 
SW
,
Pang
 
S
,
Miritsch
 
B
,
Hinterdobler
 
J
,
Werner
 
J
,
Stiller
 
B
,
Guldener
 
U
,
Webb
 
TR
,
Asselbergs
 
FW
,
Bjorkegren
 
JLM
,
Maegdefessel
 
L
,
Schunkert
 
H
,
Sager
 
HB
,
Kessler
 
T
.
Functional investigation of the coronary artery disease gene SVEP1
.
Basic Res Cardiol
 
2020
;
115
:
67
.

57

Liu
 
C-J
,
Kong
 
W
,
Ilalov
 
K
,
Yu
 
S
,
Xu
 
K
,
Prazak
 
L
,
Fajardo
 
M
,
Sehgal
 
B
,
Di Cesare
 
PE
.
ADAMTS-7: a metalloproteinase that directly binds to and degrades cartilage oligomeric matrix protein
.
FASEB J
 
2006
;
20
:
988
990
.

58

Won
 
H-H
,
Natarajan
 
P
,
Dobbyn
 
A
,
Jordan
 
DM
,
Roussos
 
P
,
Lage
 
K
,
Raychaudhuri
 
S
,
Stahl
 
E
,
Do
 
R
.
Disproportionate contributions of select genomic compartments and cell types to genetic risk for coronary artery disease
.
PLoS Genet
 
2015
;
11
:
e1005622
.

59

Aherrahrou
 
R
,
Guo
 
L
,
Nagraj
 
VP
,
Aguhob
 
A
,
Hinkle
 
J
,
Chen
 
L
,
Yuhl Soh
 
J
,
Lue
 
D
,
Alencar
 
GF
,
Boltjes
 
A
,
van der Laan
 
SW
,
Farber
 
E
,
Fuller
 
D
,
Anane-Wae
 
R
,
Akingbesote
 
N
,
Manichaikul
 
AW
,
Ma
 
L
,
Kaikkonen
 
MU
,
Bjorkegren
 
JLM
,
Onengut-Gumuscu
 
S
,
Pasterkamp
 
G
,
Miller
 
CL
,
Owens
 
GK
,
Finn
 
A
,
Navab
 
M
,
Fogelman
 
AM
,
Berliner
 
JA
,
Civelek
 
M
.
Genetic regulation of atherosclerosis-relevant phenotypes in human vascular smooth muscle cells
.
Circ Res
 
2020
;
127
:
1552
1565
.

60

Alasoo
 
K
,
Rodrigues
 
J
,
Mukhopadhyay
 
S
,
Knights
 
AJ
,
Mann
 
AL
,
Kundu
 
K
;
HIPSCI Consortium
,
Hale
 
C
,
Dougan
 
G
,
Gaffney
 
DJ
.
Shared genetic effects on chromatin and gene expression indicate a role for enhancer priming in immune response
.
Nat Genet
 
2018
;
50
:
424
431
.

61

Aherrahrou
 
R
,
Lue
 
D
,
Civelek
 
M
.
Genetic regulation of circular RNA expression in human aortic smooth muscle cells and vascular traits
.
HGG Adv
 
2023
;
4
:
100164
.

62

Aherrahrou
 
R
,
Lue
 
D
,
Perry
 
RN
,
Aberra
 
YT
,
Khan
 
MD
,
Soh
 
JY
,
Ord
 
T
,
Singha
 
P
,
Yang
 
Q
,
Gilani
 
H
,
Benavente
 
ED
,
Wong
 
D
,
Hinkle
 
J
,
Ma
 
L
,
Sheynkman
 
GM
,
den Ruijter
 
HM
,
Miller
 
CL
,
Bjorkegren
 
JLM
,
Kaikkonen
 
MU
,
Civelek
 
M
.
Genetic regulation of SMC gene expression and splicing predict causal CAD genes
.
Circ Res
 
2023
;
132
:
323
338
.

63

Klann
 
TS
,
Black
 
JB
,
Chellappan
 
M
,
Safi
 
A
,
Song
 
L
,
Hilton
 
IB
,
Crawford
 
GE
,
Reddy
 
TE
,
Gersbach
 
CA
.
CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome
.
Nat Biotechnol
 
2017
;
35
:
561
568
.

64

Morelli
 
E
,
Gulla
 
A
,
Amodio
 
N
,
Taiana
 
E
,
Neri
 
A
,
Fulciniti
 
M
,
Munshi
 
NC
.
CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) to explore the oncogenic lncRNA network
.
Methods Mol Biol
 
2021
;
2348
:
189
204
.

65

Ord
 
T
,
Ounap
 
K
,
Stolze
 
LK
,
Aherrahrou
 
R
,
Nurminen
 
V
,
Toropainen
 
A
,
Selvarajan
 
I
,
Lonnberg
 
T
,
Aavik
 
E
,
Yla-Herttuala
 
S
,
Civelek
 
M
,
Romanoski
 
CE
,
Kaikkonen
 
MU
.
Single-cell epigenomics and functional fine-mapping of atherosclerosis GWAS loci
.
Circ Res
 
2021
;
129
:
240
258
.

66

Mountjoy
 
E
,
Schmidt
 
EM
,
Carmona
 
M
,
Schwartzentruber
 
J
,
Peat
 
G
,
Miranda
 
A
,
Fumis
 
L
,
Hayhurst
 
J
,
Buniello
 
A
,
Karim
 
MA
,
Wright
 
D
,
Hercules
 
A
,
Papa
 
E
,
Fauman
 
EB
,
Barrett
 
JC
,
Todd
 
JA
,
Ochoa
 
D
,
Dunham
 
I
,
Ghoussaini
 
M
.
An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci
.
Nat Genet
 
2021
;
53
:
1527
1533
.

67

Wunnemann
 
F
,
Fotsing Tadjo
 
T
,
Beaudoin
 
M
,
Lalonde
 
S
,
Lo
 
KS
,
Kleinstiver
 
BP
,
Lettre
 
G
.
Multimodal CRISPR perturbations of GWAS loci associated with coronary artery disease in vascular endothelial cells
.
PLoS Genet
 
2023
;
19
:
e1010680
.

68

Jia
 
P
,
Zhao
 
Z
.
Network assisted analysis to prioritize GWAS results: principles, methods and perspectives
.
Hum Genet
 
2014
;
133
:
125
138
.

69

Almontashiri
 
NA
,
Antoine
 
D
,
Zhou
 
X
,
Vilmundarson
 
RO
,
Zhang
 
SX
,
Hao
 
KN
,
Chen
 
H-H
,
Stewart
 
AFR
.
9p21.3 coronary artery disease risk variants disrupt TEAD transcription factor-dependent transforming growth factor beta regulation of p16 expression in human aortic smooth muscle cells
.
Circulation
 
2015
;
132
:
1969
1978
.

70

Iyer
 
D
,
Zhao
 
Q
,
Wirka
 
R
,
Naravane
 
A
,
Nguyen
 
T
,
Liu
 
B
,
Nagao
 
M
,
Cheng
 
P
,
Miller
 
CL
,
Kim
 
JB
,
Pjanic
 
M
,
Quertermous
 
T
.
Coronary artery disease genes SMAD3 and TCF21 promote opposing interactive genetic programs that regulate smooth muscle cell differentiation and disease risk
.
PLoS Genet
 
2018
;
14
:
e1007681
.

71

Cheng
 
P
,
Wirka
 
RC
,
Shoa Clarke
 
L
,
Zhao
 
Q
,
Kundu
 
R
,
Nguyen
 
T
,
Nair
 
S
,
Sharma
 
D
,
Kim
 
H-J
,
Shi
 
H
,
Assimes
 
T
,
Brian Kim
 
J
,
Kundaje
 
A
,
Quertermous
 
T
.
ZEB2 shapes the epigenetic landscape of atherosclerosis
.
Circulation
 
2022
;
145
:
469
485
.

72

Schaid
 
DJ
,
Chen
 
W
,
Larson
 
NB
.
From genome-wide associations to candidate causal variants by statistical fine-mapping
.
Nat Rev Genet
 
2018
;
19
:
491
504
.

73

Liu
 
B
,
Gloudemans
 
MJ
,
Rao
 
AS
,
Ingelsson
 
E
,
Montgomery
 
SB
.
Abundant associations with gene expression complicate GWAS follow-up
.
Nat Genet
 
2019
;
51
:
768
769
.

74

Wallace
 
C
.
Eliciting priors and relaxing the single causal variant assumption in colocalisation analyses
.
PLoS Genet
 
2020
;
16
:
e1008720
.

75

Zhu
 
Z
,
Zhang
 
F
,
Hu
 
H
,
Bakshi
 
A
,
Robinson
 
MR
,
Powell
 
JE
,
Montgomery
 
GW
,
Goddard
 
ME
,
Wray
 
NR
,
Visscher
 
PM
,
Yang
 
J
.
Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets
.
Nat Genet
 
2016
;
48
:
481
487
.

76

Fulco
 
CP
,
Nasser
 
J
,
Jones
 
TR
,
Munson
 
G
,
Bergman
 
DT
,
Subramanian
 
V
,
Grossman
 
SR
,
Anyoha
 
R
,
Doughty
 
BR
,
Patwardhan
 
TA
,
Nguyen
 
TH
,
Kane
 
M
,
Perez
 
EM
,
Durand
 
NC
,
Lareau
 
CA
,
Stamenova
 
EK
,
Aiden
 
EL
,
Lander
 
ES
,
Engreitz
 
JM
.
Activity-by-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations
.
Nat Genet
 
2019
;
51
:
1664
1669
.

77

Munz
 
M
,
Wohlers
 
I
,
Simon
 
E
,
Reinberger
 
T
,
Busch
 
H
,
Schaefer
 
AS
,
Erdmann
 
J
.
Qtlizer: comprehensive QTL annotation of GWAS results
.
Sci Rep
 
2020
;
10
:
20417
.

78

Watanabe
 
K
,
Taskesen
 
E
,
van Bochoven
 
A
,
Posthuma
 
D
.
Functional mapping and annotation of genetic associations with FUMA
.
Nat Commun
 
2017
;
8
:
1826
.

79

Huang
 
C
,
Thompson
 
P
,
Wang
 
Y
,
Yu
 
Y
,
Zhang
 
J
,
Kong
 
D
,
Colen
 
RR
,
Knickmeyer
 
RC
,
Zhu
 
H
,
Alzheimer’s Disease Neuroimaging Initiative
.
FGWAS: functional genome wide association analysis
.
Neuroimage
 
2017
;
159
:
107
121
.

80

de Leeuw
 
CA
,
Mooij
 
JM
,
Heskes
 
T
,
Posthuma
 
D
.
MAGMA: generalized gene-set analysis of GWAS data
.
PLoS Comput Biol
 
2015
;
11
:
e1004219
.

81

Pers
 
TH
,
Karjalainen
 
JM
,
Chan
 
Y
,
Westra
 
HJ
,
Wood
 
AR
,
Yang
 
J
,
Lui
 
JC
,
Vedantam
 
S
,
Gustafsson
 
S
,
Esko
 
T
,
Frayling
 
T
,
Speliotes
 
EK
,
Genetic Investigation of ANthropometric Traits (GIANT) Consortium
,
Boehnke
 
M
,
Raychaudhuri
 
S
,
Fehrmann
 
RS
,
Hirschhorn
 
JN
,
Franke
 
L
.
Biological interpretation of genome-wide association studies using predicted gene functions
.
Nat Commun
 
2015
;
6
:
5890
.

82

Weeks
 
EM
,
Ulirsch
 
JC
,
Cheng
 
NY
,
Trippe
 
BL
,
Fine
 
RS
,
Miao
 
J
,
Patwardhan
 
TA
,
Kanai
 
M
,
Nasser
 
J
,
Fulco
 
CP
,
Tashman
 
KC
,
Aguet
 
F
,
Li
 
T
,
Ordovas-Montanes
 
J
,
Smillie
 
CS
,
Biton
 
M
,
Shalek
 
AK
,
Ananthakrishnan
 
AN
,
Xavier
 
RJ
,
Regev
 
A
,
Gupta
 
RM
,
Lage
 
K
,
Ardlie
 
KG
,
Hirschhorn
 
JN
,
Lander
 
ES
,
Engreitz
 
JM
,
Finucane
 
HK
.
Leveraging polygenic enrichments of gene features to predict genes underlying complex traits and diseases
.
Nat Genet
 
2023
;
55
:
1267
1276
.

83

Forgetta
 
V
,
Jiang
 
L
,
Vulpescu
 
NA
,
Hogan
 
MS
,
Chen
 
S
,
Morris
 
JA
,
Grinek
 
S
,
Benner
 
C
,
Jang
 
D-K
,
Hoang
 
Q
,
Burtt
 
N
,
Flannick
 
JA
,
McCarthy
 
MI
,
Fauman
 
E
,
Greenwood
 
CMT
,
Maurano
 
MT
,
Richards
 
JB
.
An effector index to predict target genes at GWAS loci
.
Hum Genet
 
2022
;
141
:
1431
1447
.

84

Fishilevich
 
S
,
Nudel
 
R
,
Rappaport
 
N
,
Hadar
 
R
,
Plaschkes
 
I
,
Iny Stein
 
T
,
Rosen
 
N
,
Kohn
 
A
,
Twik
 
M
,
Safran
 
M
,
Lancet
 
D
,
Cohen
 
D
.
GeneHancer: genome-wide integration of enhancers and target genes in GeneCards
.
Database (Oxford)
 
2017
;
2017
:
bax028
.

85

Nasser
 
J
,
Bergman
 
DT
,
Fulco
 
CP
,
Guckelberger
 
P
,
Doughty
 
BR
,
Patwardhan
 
TA
,
Jones
 
TR
,
Nguyen
 
TH
,
Ulirsch
 
JC
,
Lekschas
 
F
,
Mualim
 
K
,
Natri
 
HM
,
Weeks
 
EM
,
Munson
 
G
,
Kane
 
M
,
Kang
 
HY
,
Cui
 
A
,
Ray
 
JP
,
Eisenhaure
 
TM
,
Collins
 
RL
,
Dey
 
K
,
Pfister
 
H
,
Price
 
AL
,
Epstein
 
CB
,
Kundaje
 
A
,
Xavier
 
RJ
,
Daly
 
MJ
,
Huang
 
H
,
Finucane
 
HK
,
Hacohen
 
N
,
Lander
 
ES
,
Engreitz
 
JM
.
Genome-wide enhancer maps link risk variants to disease genes
.
Nature
 
2021
;
593
:
238
243
.

86

Ma
 
Q
,
Ozel
 
AB
,
Ramdas
 
S
,
McGee
 
B
,
Khoriaty
 
R
,
Siemieniak
 
D
,
Li
 
H-D
,
Guan
 
Y
,
Brody
 
LC
,
Mills
 
JL
,
Molloy
 
AM
,
Ginsburg
 
D
,
Li
 
JZ
,
Desch
 
KC
.
Genetic variants in PLG, LPA, and SIGLEC 14 as well as smoking contribute to plasma plasminogen levels
.
Blood
 
2014
;
124
:
3155
3164
.

87

Kronenberg
 
F
,
Mora
 
S
,
Stroes
 
ESG
,
Ference
 
BA
,
Arsenault
 
BJ
,
Berglund
 
L
,
Dweck
 
MR
,
Koschinsky
 
M
,
Lambert
 
G
,
Mach
 
F
,
McNeal
 
CJ
,
Moriarty
 
PM
,
Natarajan
 
P
,
Nordestgaard
 
BG
,
Parhofer
 
KG
,
Virani
 
SS
,
von Eckardstein
 
A
,
Watts
 
GF
,
Stock
 
JK
,
Ray
 
KK
,
Tokgozoglu
 
LS
,
Catapano
 
AL
.
Lipoprotein(a) in atherosclerotic cardiovascular disease and aortic stenosis: a European atherosclerosis society consensus statement
.
Eur Heart J
 
2022
;
43
:
3925
3946
.

88

Ugovsek
 
S
,
Sebestjen
 
M
.
Lipoprotein(a)-the crossroads of atherosclerosis, atherothrombosis and inflammation
.
Biomolecules
 
2021
;
12
:
26
.

89

Zheng
 
Q
,
Ma
 
Y
,
Chen
 
S
,
Che
 
Q
,
Chen
 
D
.
The integrated landscape of biological candidate causal genes in coronary artery disease
.
Front Genet
 
2020
;
11
:
320
.

90

Tcheandjieu
 
C
,
Zhu
 
X
,
Hilliard
 
AT
,
Clarke
 
SL
,
Napolioni
 
V
,
Ma
 
S
,
Lee
 
KM
,
Fang
 
H
,
Chen
 
F
,
Lu
 
Y
,
Tsao
 
NL
,
Raghavan
 
S
,
Koyama
 
S
,
Gorman
 
BR
,
Vujkovic
 
M
,
Klarin
 
D
,
Levin
 
MG
,
Sinnott-Armstrong
 
N
,
Wojcik
 
GL
,
Plomondon
 
ME
,
Maddox
 
TM
,
Waldo
 
SW
,
Bick
 
AG
,
Pyarajan
 
S
,
Huang
 
J
,
Song
 
R
,
Ho
 
Y-L
,
Buyske
 
S
,
Kooperberg
 
C
,
Haessler
 
J
,
Loos
 
RJF
,
Do
 
R
,
Verbanck
 
M
,
Chaudhary
 
K
,
North
 
KE
,
Avery
 
CL
,
Graff
 
M
,
Haiman
 
CA
,
Le Marchand
 
L
,
Wilkens
 
LR
,
Bis
 
JC
,
Leonard
 
H
,
Shen
 
B
,
Lange
 
LA
,
Giri
 
A
,
Dikilitas
 
O
,
Kullo
 
IJ
,
Stanaway
 
IB
,
Jarvik
 
GP
,
Gordon
 
AS
,
Hebbring
 
S
,
Namjou
 
B
,
Kaufman
 
KM
,
Ito
 
K
,
Ishigaki
 
K
,
Kamatani
 
Y
,
Verma
 
SS
,
Ritchie
 
MD
,
Kember
 
RL
,
Baras
 
A
,
Lotta
 
LA
,
Regeneron Genetics Center, CARDIoGRAMplusC4D Consortium, Biobank Japan, Million Veteran Program
,
Kathiresan
 
S
,
Hauser
 
ER
,
Miller
 
DR
,
Lee
 
JS
,
Saleheen
 
D
,
Reaven
 
PD
,
Cho
 
K
,
Gaziano
 
JM
,
Natarajan
 
P
,
Huffman
 
JE
,
Voight
 
BF
,
Rader
 
DJ
,
Chang
 
K-M
,
Lynch
 
JA
,
Damrauer
 
SM
,
Wilson
 
PWF
,
Tang
 
H
,
Sun
 
YV
,
Tsao
 
PS
,
O'Donnell
 
CJ
,
Assimes
 
TL
.
Large-scale genome-wide association study of coronary artery disease in genetically diverse populations
.
Nat Med
 
2022
;
28
:
1679
1692
.

91

Koplev
 
S
,
Seldin
 
M
,
Sukhavasi
 
K
,
Ermel
 
R
,
Pang
 
S
,
Zeng
 
L
,
Bankier
 
S
,
Di Narzo
 
A
,
Cheng
 
H
,
Meda
 
V
,
Ma
 
A
,
Talukdar
 
H
,
Cohain
 
A
,
Amadori
 
L
,
Argmann
 
C
,
Houten
 
SM
,
Franzen
 
O
,
Mocci
 
G
,
Meelu
 
OA
,
Ishikawa
 
K
,
Whatling
 
C
,
Jain
 
A
,
Jain
 
RK
,
Gan
 
LM
,
Giannarelli
 
C
,
Roussos
 
P
,
Hao
 
K
,
Schunkert
 
H
,
Michoel
 
T
,
Ruusalepp
 
A
,
Schadt
 
EE
,
Kovacic
 
JC
,
Lusis
 
AJ
,
Bjorkegren
 
JLM
.
A mechanistic framework for cardiometabolic and coronary artery diseases
.
Nat Cardiovasc Res
 
2022
;
1
:
85
100
.

92

Talukdar
 
HA
,
Foroughi Asl
 
H
,
Jain
 
RK
,
Ermel
 
R
,
Ruusalepp
 
A
,
Franzen
 
O
,
Kidd
 
BA
,
Readhead
 
B
,
Giannarelli
 
C
,
Kovacic
 
JC
,
Ivert
 
T
,
Dudley
 
JT
,
Civelek
 
M
,
Lusis
 
AJ
,
Schadt
 
EE
,
Skogsberg
 
J
,
Michoel
 
T
,
Björkegren
 
JLM
.
Cross-tissue regulatory gene networks in coronary artery disease
.
Cell Syst
 
2016
;
2
:
196
208
.

93

Franzen
 
O
,
Ermel
 
R
,
Cohain
 
A
,
Akers
 
NK
,
Di Narzo
 
A
,
Talukdar
 
HA
,
Foroughi-Asl
 
H
,
Giambartolomei
 
C
,
Fullard
 
JF
,
Sukhavasi
 
K
,
Koks
 
S
,
Gan
 
L-M
,
Giannarelli
 
C
,
Kovacic
 
JC
,
Betsholtz
 
C
,
Losic
 
B
,
Michoel
 
T
,
Hao
 
K
,
Roussos
 
P
,
Skogsberg
 
J
,
Ruusalepp
 
A
,
Schadt
 
EE
,
Bjorkegren
 
JL
.
Cardiometabolic risk loci share downstream cis- and trans-gene regulation across tissues and diseases
.
Science
 
2016
;
353
:
827
830
.

94

Turner
 
AW
,
Wong
 
D
,
Dreisbach
 
CN
,
Miller
 
CL
.
GWAS reveal targets in vessel wall pathways to treat coronary artery disease
.
Front Cardiovasc Med
 
2018
;
5
:
72
.

95

Shah
 
PW
,
Reinberger
 
T
,
Hashmi
 
S
,
Aherrahrou
 
Z
,
Erdmann
 
J
.
MRAS in coronary artery disease-unchartered territory
.
IUBMB Life
 
2024
;
76
:
300
312
.

96

Cano-Gamez
 
E
,
Trynka
 
G
.
From GWAS to function: using functional genomics to identify the mechanisms underlying complex diseases
.
Front Genet
 
2020
;
11
:
424
.

97

Insull
 
W
 Jr.
The pathology of atherosclerosis: plaque development and plaque responses to medical treatment
.
Am J Med
 
2009
;
122
:
S3
S14
.

98

Alencar
 
GF
,
Owsiany
 
KM
,
Karnewar
 
S
,
Sukhavasi
 
K
,
Mocci
 
G
,
Nguyen
 
AT
,
Williams
 
CM
,
Shamsuzzaman
 
S
,
Mokry
 
M
,
Henderson
 
CA
,
Haskins
 
R
,
Baylis
 
RA
,
Finn
 
AV
,
McNamara
 
CA
,
Zunder
 
ER
,
Venkata
 
V
,
Pasterkamp
 
G
,
Bjorkegren
 
J
,
Bekiranov
 
S
,
Owens
 
GK
.
Stem cell pluripotency genes Klf4 and oct4 regulate complex SMC phenotypic changes critical in late-stage atherosclerotic lesion pathogenesis
.
Circulation
 
2020
;
142
:
2045
2059
.

99

Bulut
 
GB
,
Alencar
 
GF
,
Owsiany
 
KM
,
Nguyen
 
AT
,
Karnewar
 
S
,
Haskins
 
RM
,
Waller
 
LK
,
Cherepanova
 
OA
,
Deaton
 
RA
,
Shankman
 
LS
,
Keller
 
SR
,
Owens
 
GK
.
KLF4 (Kruppel-like factor 4)-dependent perivascular plasticity contributes to adipose tissue inflammation
.
Arterioscler Thromb Vasc Biol
 
2021
;
41
:
284
301
.

100

Speer
 
MY
,
Yang
 
H-Y
,
Brabb
 
T
,
Leaf
 
E
,
Look
 
A
,
Lin
 
W-L
,
Frutkin
 
A
,
Dichek
 
D
,
Giachelli
 
CM
.
Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries
.
Circ Res
 
2009
;
104
:
733
741
.

101

Shankman
 
LS
,
Gomez
 
D
,
Cherepanova
 
OA
,
Salmon
 
M
,
Alencar
 
GF
,
Haskins
 
RM
,
Swiatlowska
 
P
,
Newman
 
AA
,
Greene
 
ES
,
Straub
 
AC
,
Isakson
 
B
,
Randolph
 
GJ
,
Owens
 
GK
.
KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis
.
Nat Med
 
2015
;
21
:
628
637
.

102

Slenders
 
L
,
Landsmeer
 
LPL
,
Cui
 
K
,
Depuydt
 
MAC
,
Verwer
 
M
,
Mekke
 
J
,
Timmerman
 
N
,
van den Dungen
 
NAM
,
Kuiper
 
J
,
de Winther
 
MPJ
,
Prange
 
KHM
,
Ma
 
WF
,
Miller
 
CL
,
Aherrahrou
 
R
,
Civelek
 
M
,
de Borst
 
GJ
,
de Kleijn
 
DPV
,
Asselbergs
 
FW
,
den Ruijter
 
HM
,
Boltjes
 
A
,
Pasterkamp
 
G
,
van der Laan
 
SW
,
Mokry
 
M
.
Intersecting single-cell transcriptomics and genome-wide association studies identifies crucial cell populations and candidate genes for atherosclerosis
.
Eur Heart J Open
 
2022
;
2
:
oeab043
.

103

Ord
 
T
,
Lonnberg
 
T
,
Nurminen
 
V
,
Ravindran
 
A
,
Niskanen
 
H
,
Kiema
 
M
,
Ounap
 
K
,
Maria
 
M
,
Moreau
 
PR
,
Mishra
 
PP
,
Palani
 
S
,
Virta
 
J
,
Liljenback
 
H
,
Aavik
 
E
,
Roivainen
 
A
,
Yla-Herttuala
 
S
,
Laakkonen
 
JP
,
Lehtimaki
 
T
,
Kaikkonen
 
MU
.
Dissecting the polygenic basis of atherosclerosis via disease-associated cell state signatures
.
Am J Hum Genet
 
2023
;
110
:
722
740
.

104

Pang
 
S
,
Yengo
 
L
,
Nelson
 
CP
,
Bourier
 
F
,
Zeng
 
L
,
Li
 
L
,
Kessler
 
T
,
Erdmann
 
J
,
Magi
 
R
,
Lall
 
K
,
Metspalu
 
A
,
Mueller-Myhsok
 
B
,
Samani
 
NJ
,
Visscher
 
PM
,
Schunkert
 
H
.
Genetic and modifiable risk factors combine multiplicatively in common disease
.
Clin Res Cardiol
 
2023
;
112
:
247
257
.

105

Poznyak
 
AV
,
Sukhorukov
 
VN
,
Zhuravlev
 
A
,
Orekhov
 
NA
,
Kalmykov
 
V
,
Orekhov
 
AN
.
Modulating mTOR signaling as a promising therapeutic strategy for atherosclerosis
.
Int J Mol Sci
 
2022
;
23
:
1153
.

106

Mattson
 
MP
,
Longo
 
VD
,
Harvie
 
M
.
Impact of intermittent fasting on health and disease processes
.
Ageing Res Rev
 
2017
;
39
:
46
58
.

107

Yamamoto
 
H
,
Zhang
 
S
,
Mizushima
 
N
.
Autophagy genes in biology and disease
.
Nat Rev Genet
 
2023
;
24
:
382
400
.

108

Jiang
 
B
,
Zhou
 
X
,
Yang
 
T
,
Wang
 
L
,
Feng
 
L
,
Wang
 
Z
,
Xu
 
J
,
Jing
 
W
,
Wang
 
T
,
Su
 
H
,
Yang
 
G
,
Zhang
 
Z
.
The role of autophagy in cardiovascular disease: cross-interference of signaling pathways and underlying therapeutic targets
.
Front Cardiovasc Med
 
2023
;
10
:
1088575
.

109

Klarin
 
D
,
Natarajan
 
P
.
Clinical utility of polygenic risk scores for coronary artery disease
.
Nat Rev Cardiol
 
2022
;
19
:
291
301
.

110

Choi
 
SW
,
Mak
 
TS-H
,
O’Reilly
 
PF
.
Tutorial: a guide to performing polygenic risk score analyses
.
Nat Protoc
 
2020
;
15
:
2759
2772
.

111

O’Sullivan
 
JW
,
Raghavan
 
S
,
Marquez-Luna
 
C
,
Luzum
 
JA
,
Damrauer
 
SM
,
Ashley
 
EA
,
O’Donnell
 
CJ
,
Willer
 
CJ
,
Natarajan
 
P
,
American Heart Association Council on Genomic and Precision Medicine
,
Council on Clinical Cardiology
,
Council on Arteriosclerosis, Thrombosis and Vascular Biology
,
Council on Cardiovascular Radiology and Intervention
,
Council on Lifestyle and Cardiometabolic Health
,
and Council on Peripheral Vascular Disease
.
Polygenic risk scores for cardiovascular disease: a scientific statement from the American Heart Association
.
Circulation
 
2022
;
146
:
e93
e118
.

112

Khera
 
AV
,
Chaffin
 
M
,
Aragam
 
KG
,
Haas
 
ME
,
Roselli
 
C
,
Choi
 
SH
,
Natarajan
 
P
,
Lander
 
ES
,
Lubitz
 
SA
,
Ellinor
 
PT
,
Kathiresan
 
S
.
Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations
.
Nat Genet
 
2018
;
50
:
1219
1224
.

113

Levin
 
MG
,
Kember
 
RL
,
Judy
 
R
,
Birtwell
 
D
,
Williams
 
H
,
Arany
 
Z
,
Giri
 
J
,
Guerraty
 
M
,
Cappola
 
T
,
Regeneron Genetics Center
,
Chen
 
J
,
Rader
 
DJ
,
Damrauer
 
SM
.
Genomic risk stratification predicts all-cause mortality after cardiac catheterization
.
Circ Genom Precis Med
 
2018
;
11
:
e002352
.

114

Inouye
 
M
,
Abraham
 
G
,
Nelson
 
CP
,
Wood
 
AM
,
Sweeting
 
MJ
,
Dudbridge
 
F
,
Lai
 
FY
,
Kaptoge
 
S
,
Brozynska
 
M
,
Wang
 
T
,
Ye
 
S
,
Webb
 
TR
,
Rutter
 
MK
,
Tzoulaki
 
I
,
Patel
 
RS
,
Loos
 
RJF
,
Keavney
 
B
,
Hemingway
 
H
,
Thompson
 
J
,
Watkins
 
H
,
Deloukas
 
P
,
Di Angelantonio
 
E
,
Butterworth
 
AS
,
Danesh
 
J
,
Samani
 
NJ
,
UK Biobank CardioMetabolic Consortium CHD Working Group
.
Genomic risk prediction of coronary artery disease in 480,000 adults: implications for primary prevention
.
J Am Coll Cardiol
 
2018
;
72
:
1883
1893
.

115

Detrano
 
R
,
Guerci
 
AD
,
Carr
 
JJ
,
Bild
 
DE
,
Burke
 
G
,
Folsom
 
AR
,
Liu
 
K
,
Shea
 
S
,
Szklo
 
M
,
Bluemke
 
DA
,
O’Leary
 
DH
,
Tracy
 
R
,
Watson
 
K
,
Wong
 
ND
,
Kronmal
 
RA
.
Coronary calcium as a predictor of coronary events in four racial or ethnic groups
.
N Engl J Med
 
2008
;
358
:
1336
1345
.

116

Natarajan
 
P
,
Young
 
R
,
Stitziel
 
NO
,
Padmanabhan
 
S
,
Baber
 
U
,
Mehran
 
R
,
Sartori
 
S
,
Fuster
 
V
,
Reilly
 
DF
,
Butterworth
 
A
,
Rader
 
DJ
,
Ford
 
I
,
Sattar
 
N
,
Kathiresan
 
S
.
Polygenic risk score identifies subgroup with higher burden of atherosclerosis and greater relative benefit from statin therapy in the primary prevention setting
.
Circulation
 
2017
;
135
:
2091
2101
.

117

Aragam
 
KG
,
Natarajan
 
P
.
Polygenic scores to assess atherosclerotic cardiovascular disease risk: clinical perspectives and basic implications
.
Circ Res
 
2020
;
126
:
1159
1177
.

118

Natarajan
 
P
.
Polygenic risk scoring for coronary heart disease: the first risk factor
.
J Am Coll Cardiol
 
2018
;
72
:
1894
1897
.

119

Goldstein
 
BA
,
Knowles
 
JW
,
Salfati
 
E
,
Ioannidis
 
JP
,
Assimes
 
TL
.
Simple, standardized incorporation of genetic risk into non-genetic risk prediction tools for complex traits: coronary heart disease as an example
.
Front Genet
 
2014
;
5
:
254
.

120

Mega
 
JL
,
Stitziel
 
NO
,
Smith
 
JG
,
Chasman
 
DI
,
Caulfield
 
M
,
Devlin
 
JJ
,
Nordio
 
F
,
Hyde
 
C
,
Cannon
 
CP
,
Sacks
 
F
,
Poulter
 
N
,
Sever
 
P
,
Ridker
 
PM
,
Braunwald
 
E
,
Melander
 
O
,
Kathiresan
 
S
,
Sabatine
 
MS
.
Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials
.
Lancet
 
2015
;
385
:
2264
2271
.

121

Damask
 
A
,
Steg
 
PG
,
Schwartz
 
GG
,
Szarek
 
M
,
Hagstrom
 
E
,
Badimon
 
L
,
Chapman
 
MJ
,
Boileau
 
C
,
Tsimikas
 
S
,
Ginsberg
 
HN
,
Banerjee
 
P
,
Manvelian
 
G
,
Pordy
 
R
,
Hess
 
S
,
Overton
 
JD
,
Lotta
 
LA
,
Yancopoulos
 
GD
,
Abecasis
 
GR
,
Baras
 
A
,
Paulding
 
C
,
Regeneron Genetics Center and the ODYSSEY OUTCOMES Investigators
.
Patients with high genome-wide polygenic risk scores for coronary artery disease may receive greater clinical benefit from alirocumab treatment in the ODYSSEY OUTCOMES trial
.
Circulation
 
2020
;
141
:
624
636
.

122

Marston
 
NA
,
Kamanu
 
FK
,
Nordio
 
F
,
Gurmu
 
Y
,
Roselli
 
C
,
Sever
 
PS
,
Pedersen
 
TR
,
Keech
 
AC
,
Wang
 
H
,
Lira Pineda
 
A
,
Giugliano
 
RP
,
Lubitz
 
SA
,
Ellinor
 
PT
,
Sabatine
 
MS
,
Ruff
 
CT
.
Predicting benefit from evolocumab therapy in patients with atherosclerotic disease using a genetic risk score: results from the FOURIER trial
.
Circulation
 
2020
;
141
:
616
623
.

123

Kullo
 
IJ
,
Jouni
 
H
,
Austin
 
EE
,
Brown
 
SA
,
Kruisselbrink
 
TM
,
Isseh
 
IN
,
Haddad
 
RA
,
Marroush
 
TS
,
Shameer
 
K
,
Olson
 
JE
,
Broeckel
 
U
,
Green
 
RC
,
Schaid
 
DJ
,
Montori
 
VM
,
Bailey
 
KR
.
Incorporating a genetic risk score into coronary heart disease risk estimates: effect on low-density lipoprotein cholesterol levels (the MI-GENES clinical trial)
.
Circulation
 
2016
;
133
:
1181
1188
.

124

Hartman
 
RJG
,
Owsiany
 
K
,
Ma
 
L
,
Koplev
 
S
,
Hao
 
K
,
Slenders
 
L
,
Civelek
 
M
,
Mokry
 
M
,
Kovacic
 
JC
,
Pasterkamp
 
G
,
Owens
 
G
,
Bjorkegren
 
JLM
,
den Ruijter
 
HM
.
Sex-stratified gene regulatory networks reveal female key driver genes of atherosclerosis involved in smooth muscle cell phenotype switching
.
Circulation
 
2021
;
143
:
713
726
.

125

Ruijter
 
HD
.
Sex and gender matters to the heart
.
Front Cardiovasc Med
 
2020
;
7
:
587888
.

126

Panahiazar
 
M
,
Bishara
 
AM
,
Chern
 
Y
,
Alizadehsani
 
R
,
Islam
 
SMS
,
Hadley
 
D
,
Arnaout
 
R
,
Beygui
 
RE
.
Gender-based time discrepancy in diagnosis of coronary artery disease based on data analytics of electronic medical records
.
Front Cardiovasc Med
 
2022
;
9
:
969325
.

127

Motovska
 
Z
,
Hlinomaz
 
O
,
Aschermann
 
M
,
Jarkovsky
 
J
,
Zelizko
 
M
,
Kala
 
P
,
Groch
 
L
,
Svoboda
 
M
,
Hromadka
 
M
,
Widimsky
 
P
.
Trends in outcomes of women with myocardial infarction undergoing primary angioplasty-analysis of randomized trials
.
Front Cardiovasc Med
 
2022
;
9
:
953567
.

128

Wise
 
AL
,
Gyi
 
L
,
Manolio
 
TA
.
Exclusion: toward integrating the X chromosome in genome-wide association analyses
.
Am J Hum Genet
 
2013
;
92
:
643
647
.

129

Winham
 
SJ
,
de Andrade
 
M
,
Miller
 
VM
.
Genetics of cardiovascular disease: importance of sex and ethnicity
.
Atherosclerosis
 
2015
;
241
:
219
228
.

130

Vaura
 
F
,
Palmu
 
J
,
Aittokallio
 
J
,
Kauko
 
A
,
Niiranen
 
T
.
Genetic, molecular, and cellular determinants of sex-specific cardiovascular traits
.
Circ Res
 
2022
;
130
:
611
631
.

131

Kim
 
ESH
,
Menon
 
V
.
Status of women in cardiovascular clinical trials
.
Arterioscler Thromb Vasc Biol
 
2009
;
29
:
279
283
.

132

Jin
 
X
,
Chandramouli
 
C
,
Allocco
 
B
,
Gong
 
E
,
Lam
 
CSP
,
Yan
 
LL
.
Women’s participation in cardiovascular clinical trials from 2010 to 2017
.
Circulation
 
2020
;
141
:
540
548
.

133

Ramirez
 
FD
,
Motazedian
 
P
,
Jung
 
RG
,
Di Santo
 
P
,
MacDonald
 
Z
,
Simard
 
T
,
Clancy
 
AA
,
Russo
 
JJ
,
Welch
 
V
,
Wells
 
GA
,
Hibbert
 
B
.
Sex bias is increasingly prevalent in preclinical cardiovascular research: implications for translational medicine and health equity for women: a systematic assessment of leading cardiovascular journals over a 10-year period
.
Circulation
 
2017
;
135
:
625
626
.

134

Chang
 
DH
,
Dumanski
 
SM
,
Ahmed
 
SB
.
Female sex-specific considerations to improve rigor and reproducibility in cardiovascular research
.
Am J Physiol Heart Circ Physiol
 
2023
;
324
:
H279
H287
.

135

CARDIoGRAMplusC4D Consortium
,
Deloukas
 
P
,
Kanoni
 
S
,
Willenborg
 
C
,
Farrall
 
M
,
Assimes
 
TL
,
Thompson
 
JR
,
Ingelsson
 
E
,
Saleheen
 
D
,
Erdmann
 
J
,
Goldstein
 
BA
,
Stirrups
 
K
,
Konig
 
IR
,
Cazier
 
JB
,
Johansson
 
A
,
Hall
 
AS
,
Lee
 
JY
,
Willer
 
CJ
,
Chambers
 
JC
,
Esko
 
T
,
Folkersen
 
L
,
Goel
 
A
,
Grundberg
 
E
,
Havulinna
 
AS
,
Ho
 
WK
,
Hopewell
 
JC
,
Eriksson
 
N
,
Kleber
 
ME
,
Kristiansson
 
K
,
Lundmark
 
P
,
Lyytikainen
 
LP
,
Rafelt
 
S
,
Shungin
 
D
,
Strawbridge
 
RJ
,
Thorleifsson
 
G
,
Tikkanen
 
E
,
Van Zuydam
 
N
,
Voight
 
BF
,
Waite
 
LL
,
Zhang
 
W
,
Ziegler
 
A
,
Absher
 
D
,
Altshuler
 
D
,
Balmforth
 
AJ
,
Barroso
 
I
,
Braund
 
PS
,
Burgdorf
 
C
,
Claudi-Boehm
 
S
,
Cox
 
D
,
Dimitriou
 
M
,
Do
 
R
,
DIAGRAM Consortium
,
CARDIOGENICS Consortium
,
Doney
 
AS
,
El Mokhtari
 
N
,
Eriksson
 
P
,
Fischer
 
K
,
Fontanillas
 
P
,
Franco-Cereceda
 
A
,
Gigante
 
B
,
Groop
 
L
,
Gustafsson
 
S
,
Hager
 
J
,
Hallmans
 
G
,
Han
 
BG
,
Hunt
 
SE
,
Kang
 
HM
,
Illig
 
T
,
Kessler
 
T
,
Knowles
 
JW
,
Kolovou
 
G
,
Kuusisto
 
J
,
Langenberg
 
C
,
Langford
 
C
,
Leander
 
K
,
Lokki
 
ML
,
Lundmark
 
A
,
McCarthy
 
MI
,
Meisinger
 
C
,
Melander
 
O
,
Mihailov
 
E
,
Maouche
 
S
,
Morris
 
AD
,
Muller-Nurasyid
 
M
,
MuTHER Consortium
,
Nikus
 
K
,
Peden
 
JF
,
Rayner
 
NW
,
Rasheed
 
A
,
Rosinger
 
S
,
Rubin
 
D
,
Rumpf
 
MP
,
Schafer
 
A
,
Sivananthan
 
M
,
Song
 
C
,
Stewart
 
AF
,
Tan
 
ST
,
Thorgeirsson
 
G
,
van der Schoot
 
CE
,
Wagner
 
PJ
,
Wellcome Trust Case Control Consortium
,
Wells
 
GA
,
Wild
 
PS
,
Yang
 
TP
,
Amouyel
 
P
,
Arveiler
 
D
,
Basart
 
H
,
Boehnke
 
M
,
Boerwinkle
 
E
,
Brambilla
 
P
,
Cambien
 
F
,
Cupples
 
AL
,
de Faire
 
U
,
Dehghan
 
A
,
Diemert
 
P
,
Epstein
 
SE
,
Evans
 
A
,
Ferrario
 
MM
,
Ferrieres
 
J
,
Gauguier
 
D
,
Go
 
AS
,
Goodall
 
AH
,
Gudnason
 
V
,
Hazen
 
SL
,
Holm
 
H
,
Iribarren
 
C
,
Jang
 
Y
,
Kahonen
 
M
,
Kee
 
F
,
Kim
 
HS
,
Klopp
 
N
,
Koenig
 
W
,
Kratzer
 
W
,
Kuulasmaa
 
K
,
Laakso
 
M
,
Laaksonen
 
R
,
Lee
 
JY
,
Lind
 
L
,
Ouwehand
 
WH
,
Parish
 
S
,
Park
 
JE
,
Pedersen
 
NL
,
Peters
 
A
,
Quertermous
 
T
,
Rader
 
DJ
,
Salomaa
 
V
,
Schadt
 
E
,
Shah
 
SH
,
Sinisalo
 
J
,
Stark
 
K
,
Stefansson
 
K
,
Tregouet
 
DA
,
Virtamo
 
J
,
Wallentin
 
L
,
Wareham
 
N
,
Zimmermann
 
ME
,
Nieminen
 
MS
,
Hengstenberg
 
C
,
Sandhu
 
MS
,
Pastinen
 
T
,
Syvanen
 
AC
,
Hovingh
 
GK
,
Dedoussis
 
G
,
Franks
 
PW
,
Lehtimaki
 
T
,
Metspalu
 
A
,
Zalloua
 
PA
,
Siegbahn
 
A
,
Schreiber
 
S
,
Ripatti
 
S
,
Blankenberg
 
SS
,
Perola
 
M
,
Clarke
 
R
,
Boehm
 
BO
,
O’Donnell
 
C
,
Reilly
 
MP
,
Marz
 
W
,
Collins
 
R
,
Kathiresan
 
S
,
Hamsten
 
A
,
Kooner
 
JS
,
Thorsteinsdottir
 
U
,
Danesh
 
J
,
Palmer
 
CN
,
Roberts
 
R
,
Watkins
 
H
,
Schunkert
 
H
,
Samani
 
NJ
.
Large-scale association analysis identifies new risk loci for coronary artery disease
.
Nat Genet
 
2013
;
45
:
25
33
.

136

Liu
 
LY
,
Schaub
 
MA
,
Sirota
 
M
,
Butte
 
AJ
.
Sex differences in disease risk from reported genome-wide association study findings
.
Hum Genet
 
2012
;
131
:
353
364
.

137

Sakkers
 
TR
,
Mokry
 
M
,
Civelek
 
M
,
Erdmann
 
J
,
Pasterkamp
 
G
,
Diez Benavente
 
E
,
den Ruijter
 
HM
.
Sex differences in the genetic and molecular mechanisms of coronary artery disease
.
Atherosclerosis
 
2023
;
384
:
117279
.

138

AlBadri
 
A
,
Eshtehardi
 
P
,
Hung
 
OY
,
Bouchi
 
Y
,
Khawaja
 
S
,
Mercado
 
K
,
Corban
 
MT
,
Mehta
 
PK
,
Shaw
 
LJ
,
Samady
 
H
.
Coronary microvascular dysfunction is associated with significant plaque burden and diffuse epicardial atherosclerotic disease
.
JACC Cardiovasc Interv
 
2019
;
12
:
1519
1520
.

139

Dungan
 
JR
,
Qin
 
X
,
Gregory
 
SG
,
Cooper-Dehoff
 
R
,
Duarte
 
JD
,
Qin
 
H
,
Gulati
 
M
,
Taylor
 
JY
,
Pepine
 
CJ
,
Hauser
 
ER
,
Kraus
 
WE
.
Sex-dimorphic gene effects on survival outcomes in people with coronary artery disease
.
Am Heart J Plus
 
2022
;
17
:
100152
.

140

Littlejohns
 
TJ
,
Sudlow
 
C
,
Allen
 
NE
,
Collins
 
R
.
UK biobank: opportunities for cardiovascular research
.
Eur Heart J
 
2019
;
40
:
1158
1166
.

141

Skotte
 
L
,
Koch
 
A
,
Yakimov
 
V
,
Zhou
 
S
,
Soborg
 
B
,
Andersson
 
M
,
Michelsen
 
SW
,
Navne
 
JE
,
Mistry
 
JM
,
Dion
 
PA
,
Pedersen
 
ML
,
Borresen
 
ML
,
Rouleau
 
GA
,
Geller
 
F
,
Melbye
 
M
,
Feenstra
 
B
.
CPT1A missense mutation associated with fatty acid metabolism and reduced height in greenlanders
.
Circ Cardiovasc Genet
 
2017
;
10
:
e001618
.

142

Bjorkegren
 
JLM
,
Kovacic
 
JC
,
Dudley
 
JT
,
Schadt
 
EE
.
Genome-wide significant loci: how important are they? Systems genetics to understand heritability of coronary artery disease and other common complex disorders
.
J Am Coll Cardiol
 
2015
;
65
:
830
845
.

143

Lu
 
T
,
Forgetta
 
V
,
Richards
 
JB
,
Greenwood
 
CMT
.
Genetic determinants of polygenic prediction accuracy within a population
.
Genetics
 
2022
;
222
:
iyac158
.

144

Martin
 
AR
,
Kanai
 
M
,
Kamatani
 
Y
,
Okada
 
Y
,
Neale
 
BM
,
Daly
 
MJ
.
Clinical use of current polygenic risk scores may exacerbate health disparities
.
Nat Genet
 
2019
;
51
:
584
591
.

145

Lu
 
X
,
Wang
 
L
,
Chen
 
S
,
He
 
L
,
Yang
 
X
,
Shi
 
Y
,
Cheng
 
J
,
Zhang
 
L
,
Gu
 
CC
,
Huang
 
J
,
Wu
 
T
,
Ma
 
Y
,
Li
 
J
,
Cao
 
J
,
Chen
 
J
,
Ge
 
D
,
Fan
 
Z
,
Li
 
Y
,
Zhao
 
L
,
Li
 
H
,
Zhou
 
X
,
Chen
 
L
,
Liu
 
D
,
Chen
 
J
,
Duan
 
X
,
Hao
 
Y
,
Wang
 
L
,
Lu
 
F
,
Liu
 
Z
,
Yao
 
C
,
Shen
 
C
,
Pu
 
X
,
Yu
 
L
,
Fang
 
X
,
Xu
 
L
,
Mu
 
J
,
Wu
 
X
,
Zheng
 
R
,
Wu
 
N
,
Zhao
 
Q
,
Li
 
Y
,
Liu
 
X
,
Wang
 
M
,
Yu
 
D
,
Hu
 
D
,
Ji
 
X
,
Guo
 
D
,
Sun
 
D
,
Wang
 
Q
,
Yang
 
Y
,
Liu
 
F
,
Mao
 
Q
,
Liang
 
X
,
Ji
 
J
,
Chen
 
P
,
Mo
 
X
,
Li
 
D
,
Chai
 
G
,
Tang
 
Y
,
Li
 
X
,
Du
 
Z
,
Liu
 
X
,
Dou
 
C
,
Yang
 
Z
,
Meng
 
Q
,
Wang
 
D
,
Wang
 
R
,
Yang
 
J
,
Schunkert
 
H
,
Samani
 
NJ
,
Kathiresan
 
S
,
Reilly
 
MP
,
Erdmann
 
J
,
Coronary ARtery DIsease Genome-Wide Replication And Meta-Analysis (CARDIoGRAM) Consortium
,
Peng
 
X
,
Wu
 
X
,
Liu
 
D
,
Yang
 
Y
,
Chen
 
R
,
Qiang
 
B
,
Gu
 
D
.
Genome-wide association study in Han Chinese identifies four new susceptibility loci for coronary artery disease
.
Nat Genet
 
2012
;
44
:
890
894
.

146

Takeuchi
 
F
,
Yokota
 
M
,
Yamamoto
 
K
,
Nakashima
 
E
,
Katsuya
 
T
,
Asano
 
H
,
Isono
 
M
,
Nabika
 
T
,
Sugiyama
 
T
,
Fujioka
 
A
,
Awata
 
N
,
Ohnaka
 
K
,
Nakatochi
 
M
,
Kitajima
 
H
,
Rakugi
 
H
,
Nakamura
 
J
,
Ohkubo
 
T
,
Imai
 
Y
,
Shimamoto
 
K
,
Yamori
 
Y
,
Yamaguchi
 
S
,
Kobayashi
 
S
,
Takayanagi
 
R
,
Ogihara
 
T
,
Kato
 
N
.
Genome-wide association study of coronary artery disease in the Japanese
.
Eur J Hum Genet
 
2012
;
20
:
333
340
.

147

Lettre
 
G
,
Palmer
 
CD
,
Young
 
T
,
Ejebe
 
KG
,
Allayee
 
H
,
Benjamin
 
EJ
,
Bennett
 
F
,
Bowden
 
DW
,
Chakravarti
 
A
,
Dreisbach
 
A
,
Farlow
 
DN
,
Folsom
 
AR
,
Fornage
 
M
,
Forrester
 
T
,
Fox
 
E
,
Haiman
 
CA
,
Hartiala
 
J
,
Harris
 
TB
,
Hazen
 
SL
,
Heckbert
 
SR
,
Henderson
 
BE
,
Hirschhorn
 
JN
,
Keating
 
BJ
,
Kritchevsky
 
SB
,
Larkin
 
E
,
Li
 
M
,
Rudock
 
ME
,
McKenzie
 
CA
,
Meigs
 
JB
,
Meng
 
YA
,
Mosley
 
TH
,
Newman
 
AB
,
Newton-Cheh
 
CH
,
Paltoo
 
DN
,
Papanicolaou
 
GJ
,
Patterson
 
N
,
Post
 
WS
,
Psaty
 
BM
,
Qasim
 
AN
,
Qu
 
L
,
Rader
 
DJ
,
Redline
 
S
,
Reilly
 
MP
,
Reiner
 
AP
,
Rich
 
SS
,
Rotter
 
JI
,
Liu
 
Y
,
Shrader
 
P
,
Siscovick
 
DS
,
Tang
 
WH
,
Taylor
 
HA
,
Tracy
 
RP
,
Vasan
 
RS
,
Waters
 
KM
,
Wilks
 
R
,
Wilson
 
JG
,
Fabsitz
 
RR
,
Gabriel
 
SB
,
Kathiresan
 
S
,
Boerwinkle
 
E
.
Genome-wide association study of coronary heart disease and its risk factors in 8,090 African Americans: the NHLBI CARe project
.
PLoS Genet
 
2011
;
7
:
e1001300
.

148

Leigh
 
JA
,
Alvarez
 
M
,
Rodriguez
 
CJ
.
Ethnic minorities and coronary heart disease: an update and future directions
.
Curr Atheroscler Rep
 
2016
;
18
:
9
.

149

Graham
 
G
.
Disparities in cardiovascular disease risk in the United States
.
Curr Cardiol Rev
 
2015
;
11
:
238
245
.

150

Nelson
 
MR
,
Tipney
 
H
,
Painter
 
JL
,
Shen
 
J
,
Nicoletti
 
P
,
Shen
 
Y
,
Floratos
 
A
,
Sham
 
PC
,
Li
 
MJ
,
Wang
 
J
,
Cardon
 
LR
,
Whittaker
 
JC
,
Sanseau
 
P
.
The support of human genetic evidence for approved drug indications
.
Nat Genet
 
2015
;
47
:
856
860
.

151

Zhou
 
Y
,
Zhang
 
Y
,
Lian
 
X
,
Li
 
F
,
Wang
 
C
,
Zhu
 
F
,
Qiu
 
Y
,
Chen
 
Y
.
Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents
.
Nucleic Acids Res
 
2022
;
50
:
D1398
D1407
.

152

Soehnlein
 
O
,
Libby
 
P
.
Targeting inflammation in atherosclerosis—from experimental insights to the clinic
.
Nat Rev Drug Discov
 
2021
;
20
:
589
610
.

153

Guadamuz
 
JS
,
Shooshtari
 
A
,
Qato
 
DM
.
Global, regional and national trends in statin utilisation in high-income and low/middle-income countries, 2015–2020
.
BMJ Open
 
2022
;
12
:
e061350
.

154

Abifadel
 
M
,
Varret
 
M
,
Rabes
 
JP
,
Allard
 
D
,
Ouguerram
 
K
,
Devillers
 
M
,
Cruaud
 
C
,
Benjannet
 
S
,
Wickham
 
L
,
Erlich
 
D
,
Derre
 
A
,
Villeger
 
L
,
Farnier
 
M
,
Beucler
 
I
,
Bruckert
 
E
,
Chambaz
 
J
,
Chanu
 
B
,
Lecerf
 
JM
,
Luc
 
G
,
Moulin
 
P
,
Weissenbach
 
J
,
Prat
 
A
,
Krempf
 
M
,
Junien
 
C
,
Seidah
 
NG
,
Boileau
 
C
.
Mutations in PCSK9 cause autosomal dominant hypercholesterolemia
.
Nat Genet
 
2003
;
34
:
154
156
.

155

Cohen
 
J
,
Pertsemlidis
 
A
,
Kotowski
 
IK
,
Graham
 
R
,
Garcia
 
CK
,
Hobbs
 
HH
.
Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9
.
Nat Genet
 
2005
;
37
:
161
165
.

156

Cohen
 
JC
,
Boerwinkle
 
E
,
Mosley
 
TH
 Jr
,
Hobbs
 
HH
.
Sequence variations in PCSK9, low LDL, and protection against coronary heart disease
.
N Engl J Med
 
2006
;
354
:
1264
1272
.

157

Kotowski
 
IK
,
Pertsemlidis
 
A
,
Luke
 
A
,
Cooper
 
RS
,
Vega
 
GL
,
Cohen
 
JC
,
Hobbs
 
HH
.
A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol
.
Am J Hum Genet
 
2006
;
78
:
410
422
.

158

Subbotin
 
VM
.
Excessive intimal hyperplasia in human coronary arteries before intimal lipid depositions is the initiation of coronary atherosclerosis and constitutes a therapeutic target
.
Drug Discov Today
 
2016
;
21
:
1578
1595
.

159

Maier
 
A
,
Peille
 
A-L
,
Vuaroqueaux
 
V
,
Lahn
 
M
.
Anti-tumor activity of the TGF-beta receptor kinase inhibitor galunisertib (LY2157299 monohydrate) in patient-derived tumor xenografts
.
Cell Oncol (Dordr)
 
2015
;
38
:
131
144
.

160

Ma
 
Z
,
Mao
 
C
,
Chen
 
X
,
Yang
 
S
,
Qiu
 
Z
,
Yu
 
B
,
Jia
 
Y
,
Wu
 
C
,
Wang
 
Y
,
Wang
 
Y
,
Gu
 
R
,
Yu
 
F
,
Yin
 
Y
,
Wang
 
X
,
Xu
 
Q
,
Liu
 
C
,
Liao
 
Y
,
Zheng
 
J
,
Fu
 
Y
,
Kong
 
W
.
Peptide vaccine against ADAMTS-7 ameliorates atherosclerosis and postinjury neointima hyperplasia
.
Circulation
 
2023
;
147
:
728
742
.

161

Wada
 
Y
,
Jensen
 
C
,
Meyer
 
ASP
,
Zonoozi
 
AAM
,
Honda
 
H
.
Efficacy and safety of interleukin-6 inhibition with ziltivekimab in patients at high risk of atherosclerotic events in Japan (RESCUE-2): a randomized, double-blind, placebo-controlled, phase 2 trial
.
J Cardiol
 
2023
;
82
:
279
285
.

Author notes

Conflict of interest: None declared.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://dbpia.nl.go.kr/pages/standard-publication-reuse-rights)

Supplementary data