Abstract

Identifying endemic species and the areas of endemism delimited by them is central to biogeography. However, the impact of distinct taxonomic approaches on these patterns is often neglected. We investigated how three different taxonomic approaches impact the patterns of bird endemism in the Cerrado. The first two approaches (at species and subspecies levels) were based on traditional taxonomy based on the biological species concept. The third approach was based on a revised alternative taxonomy that sought to identify evolutionarily significant units (ESUs). In this third approach, after identifying the endemic taxa using traditional taxonomy, we revised their validity, removing biologically meaningless entities. We then detected the areas of endemism delimited by these endemic taxa under the three taxonomic approaches. We found that traditional taxonomy at the species level underestimated bird endemism by ignoring some ESUs that were considered subspecies. In contrast, traditional taxonomy at the subspecies level overestimated bird endemism, leading to the recognition of spurious areas of endemism because several of the purported endemic subspecies were taxonomic artefacts. The revised taxonomy provided a more refined picture of patterns of avian endemism in the Cerrado, suggesting that the use of ESUs improves the results of biogeographical analysis.

Introduction

Identifying areas of endemism, the fundamental units in biogeography (Hausdorf 2002), is the first step towards understanding the historical or current factors that explain modern patterns of speciation and range restriction (Slatyer et al. 2007). Different biological groups living in the same biogeographical region usually exhibit distinct patterns of endemism owing to differences in their traits, habitat preferences, and evolutionary histories (Kessler et al. 2001, González-Orozco et al. 2015). However, taxonomists dealing with those groups generally follow different taxonomic practices (Winston 1999), which, in turn, can also affect endemicity patterns.

In biogeographical analyses, species are the most basic taxonomic units, but they are identified and delimited differently across major biological groups (Stankowski and Ravinet 2021). For example, the number of polytypic species (i.e. composed of two or more subspecies) relative to the total number of species varies substantially between biological groups, with much higher rates among vertebrates than invertebrates (Vinarski 2015). Consequently, in highly polytypic biological groups, any biogeographical analyses conducted at the species level can potentially lose significant taxonomic resolution (O’Hara 1993) because many ‘evolutionarily significant units’ (ESUs) (Moritz 1994) treated as subspecies would not be included in the analyses.

The impact of ignoring important ESUs in biogeographical analyses might be particularly detrimental in ornithology, where the biological species concept (BSC) (Mayr 1963, Johnson et al. 1999) has been highly influential since the first half of the 20th century (Haffer 1992). From 1910 to 1960, for instance, the number of recognized bird species dropped from ~19 000 monotypic species to ~9000 polytypic species (Mayr 1969). The logical result was that the wide use of polytypic species ended up underestimating the number of ESUs in birds (Milá et al. 2012). For example, a recent estimate of avian evolutionary diversity suggested that there are currently ~18 000 ESUs (‘phylogenetic species’) of birds (Barrowclough et al. 2016), which represents a surplus of 62% in the number of currently recognized bird species (Gill et al. 2023).

In contrast, bird subspecies, as currently recognized, are often not ESUs (Burbrink et al. 2022) and, therefore, cannot be used to improve the taxonomic resolution of biogeographical studies (Zink 2004). That is probably why ‘trinomial nomenclature survives primarily as a tool of convenience that cannot be viewed as strict science and should not be called on to establish or resolve crucial policy issues such as endangered species listings’ (Fitzpatrick 2010). This is because most bird subspecies have been described in a pre-statistical era, often from small samples and with limited geographical coverage, never receiving modern, quantitative scrutiny (Haig and Winker 2010, Remsen 2010). Consequently, many of the ~20 000 bird subspecies currently recognized (Gill et al. 2023) represent arbitrary subdivisions of cline or hybrid populations (Zink 2004, Aleixo 2007, Barrowclough et al. 2016).

In recent years, new technologies have led to frequent changes in bird taxonomy owing to rearrangements of entire genera, families, and even orders, accompanied by repeated nomenclatural changes (David and Gosselin 2011, Burns et al. 2016). However, this apparent taxonomic dynamism is misleading because even the most up-to-date taxonomic bird databases (e.g. Clements et al. 2022, Gill et al. 2023, Remsen et al. 2023), as discussed above, still rely primarily on the subspecific arrangements presented decades ago by Peters et al. (1931–1987) and, for the Neotropical region, also by Hellmayr et al. (1918–1949) and Zimmer (1931–1953). Therefore, it is unsurprising that few studies that used revised alternative taxonomic arrangements have identified patterns of bird endemism that differ from those using the traditional taxonomy (Peterson and Navarro-Singüenza 1999, Peterson 2006). Such differences, in turn, can impact biogeographical interpretations and conservation planning (Clements et al. 2008, Huang et al. 2016).

In this paper, we describe how different taxonomic traditions and practices for identifying ESUs in birds can impact the recognition of patterns of endemism in the Cerrado, which is the largest and most biodiverse tropical savanna in the world (Oliveira and Marquis 2002, Silva and Bates 2002). We hypothesized that using the traditionally recognized biological species and subspecies as taxonomic units in biogeographical analyses can underestimate and overestimate, respectively, regional endemism levels and affect the number and location of areas of endemism. For that, we adopted the following approach: (i) we used different sources to organize a list of endemic birds of the Cerrado that recognizes both species and subspecies using a traditional taxonomic arrangement; (ii) we conducted detailed taxonomic revisions to identify ESUs endemic to the Cerrado using an alternative taxonomy; (iii) we detected and mapped the areas of endemism for birds in the Cerrado using these distinct taxonomic approaches; and (iv) we discussed the implications of our findings for future biogeographical studies and conservation efforts.

Materials and methods

Study area

The Cerrado is a biogeographical region mainly distributed across central Brazil, with minor extensions into eastern Bolivia and Paraguay (Silva and Bates 2002, Klink and Machado 2005, Villarroel et al. 2016). It harbours several vegetation physiognomies, ranging from pure grasslands to evergreen forests (Walter 2006), but savanna-like vegetation dominates the landscape (Walter et al. 2008). Although the intensive economic exploration of the Cerrado dates back only ~70 years, when modern agricultural techniques and road systems were developed (Ratter et al. 1997, Klink and Machado 2005), ~50% of its original vegetation has already been lost, with only 8.3% of its area protected in reserves (Françoso et al. 2015, Vieira et al. 2022).

In this paper, we determined the geographical limits of the Cerrado by combining the maps proposed by IBGE (2019) for Brazil and the one presented by Dinerstein et al. (2017) for Bolivia and Paraguay. Consequently, the limits of the Cerrado adopted here (Fig. 1) include part of the ‘Campo Rupestre’, a montane fire-prone vegetation type restricted to above 900 m of elevation on shallow and nutrient-poor sandy soils with rocky outcrops (Giulietti et al. 1997, Silveira et al. 2016). The Campo Rupestre is composed of an herbaceous stratum interspersed with evergreen shrubs and subshrubs, harbouring many endemic plant species (Giulietti et al. 1997, Silveira et al. 2016). Previous authors have highlighted the distinctiveness of the Campo Rupestre, considering it a biogeographical region independent from the Cerrado (Vasconcelos 2011, Colli‐Silva et al. 2019). However, given the open nature and patchy distribution of the Campo Rupestre within a matrix dominated by other vegetation types, we preferred to include part of it in the Cerrado (Ribeiro and Walter 2008).

Major blocks of tropical savanna found in South America. These blocks are delimited by their geographical position and floristic and abiotic features (Gottsberger and Silberbauer-Gottsberger 2006, Ratter et al. 2006, Dinerstein et al. 2017, Borghetti et al. 2019).
Figure 1.

Major blocks of tropical savanna found in South America. These blocks are delimited by their geographical position and floristic and abiotic features (Gottsberger and Silberbauer-Gottsberger 2006, Ratter et al. 2006, Dinerstein et al. 2017, Borghetti et al. 2019).

Identifying and mapping species and subspecies potentially endemic to the Cerrado

To identify and map the bird species and subspecies potentially endemic to the Cerrado, we followed a series of steps summarized in the flowchart represented in the Supporting Information (Supporting Information, Fig. S1). We first reviewed the literature and listed all taxonomic units (species or subspecies) considered endemic to the Cerrado by previous authors using the traditional taxonomy based on the BSC. In addition, we also inspected the range maps and textual range descriptions (del Hoyo et al. 1992–2012, Dickinson 2003, Clements 2007, Ridgely and Tudor 2009) of all bird taxa ever recorded in the Cerrado (Silva 1995b, Silva and Santos 2005) to identify overlooked endemic species and subspecies. Next, we checked the range of every species or subspecies, consulting general catalogues (Hellmayr et al. 1918–1949, Pinto 1938, 1944, 1964, 1978), and excluded those taxa with ranges extending considerably into other biogeographical regions.

To map the range of the taxa that remained after this initial filtering process, we used data from four sources: (i) unpublished field observations gathered by L.E.L. during 20 years of ornithological exploration of the Cerrado; (ii) records collected during an exhaustive literature review, which had as starting point the bibliographic compilations of the ornithological literature for Brazil (Oniki and Willis 2002), Paraguay (Hayes 1995), and Bolivia (Remsen and Traylor 1989), in addition to research on two online searching engines (Google Scholar and Web of Science), using as keywords the current scientific names of the target species and their junior synonyms; (iii) specimens of ornithological collections: 11 of them in Brazil (Fundação Museu de Ornitologia, Goiânia; Museu de Biologia Professor Mello Leitão, Santa Teresa; Museu de Ciências Naturais da Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte; Museu de Zoologia da Universidade de São Paulo, São Paulo; Museu de Zoologia José Hidasi, Porto Nacional; Museu Nacional, Rio de Janeiro; Museu Paraense Emílio Goeldi, Belém; Reserva Ecológica do IBGE, Brasília; Coleção Ornitológica Marcelo Bagno da Universidade de Brasília, Brasília; Universidade Federal de Mato Grosso, Cuiabá; and Centro de Coleções Taxonômicas da Universidade Federal de Minas Gerais, Belo Horizonte), 6 in North America (Academy of Natural Sciences of Philadelphia, Philadelphia; American Museum of Natural History, New York; Carnegie Museum of Natural History, Pittsburgh; Field Museum, Chicago; Louisiana State University Museum of Natural Science, Baton Rouge; and National Museum of Natural History, Washington, DC), and 7 in Europe (Natural History Museum, Tring, UK; Muséum National D’Histoire Naturelle, Paris, France; Naturhistorisches Museum, Wien, Austria; Naturhistoriska Riksmuseet Stockholm, Sweden; Senckenberg Naturmuseum, Frankfurt, Germany; Museum für Naturkunde, Berlin, Germany; and Zoologische Staatssammlungen Museum, Munich, Germany) [in some of these collections, owing to time constraints, it was not possible to examine records of all available specimens, especially subspecies]; and (iv) records obtained from two online databases of biological collections, namely: VertNet (http://vertnet.org) and SpeciesLink (http://splink.cria.org.br). All these records were georeferenced using three sources: (i) ornithological gazetteers (Paynter 1989, 1992, Paynter and Traylor 1991, Vanzolini 1992); (ii) Google Earth (http://earth.google.com); and (iii) Global Gazetteer (http://www.fallingrain.com/world).

We did not use data from some biodiversity and citizen science platforms in this study, such as GBIF (https://www.gbif.org), eBird (https://ebird.org), and WikiAves (https://www.wikiaves.com). Although these databases contain a vast amount of useful data, we did not consider them suitable for this study for several reasons. Firstly, identification mistakes of ‘unvouchered’ records (see Daru and Rodriguez 2023) were common, especially in eBird. Secondly, precise geographical coordinates of records were often not available, especially in WikiAves. Thirdly, the non-citizen science data provided by GBIF are highly redundant to the data we collected directly from museum specimens. Lastly, records from these databases were mostly at the species level, which made it difficult to compare the taxonomic approaches adopted here at different resolutions.

Defining criteria to recognize birds endemic to the Cerrado

A set of criteria was required to confirm that the species and subspecies identified in the first coarse filtering were endemic to the Cerrado. The main reason is that recognizing endemism at the regional level can sometimes be controversial owing to a lack of consensus on the boundaries of the region or criteria for identifying an endemic taxon. In the Cerrado, there are three main challenges. Firstly, Cerrado maps are rough at the local level (Lopes 2008), and small patches of disjunct Cerrado in adjacent biogeographical regions are often inadequately mapped (Ratter 1982, Ribeiro et al. 2009, Mereles 2013, Marques et al. 2020). Therefore, there are controversies about whether taxa occurring in these disjunct patches should be considered endemic to the Cerrado. Secondly, boundaries between neighbouring biogeographical regions everywhere are not sharp. Instead, complex transitions and interdigitations between them usually exist, providing suitable habitats for endemic species. In the Cerrado, for instance, the transitional belt separating it from neighbouring biogeographical regions can reach up to 200 km (Eiten 1972, Ackerly et al. 1989, Marques et al. 2020). Thirdly, endemic taxa can dwell in adjacent biogeographical regions. For example, Silva (1996) demonstrated that the distributions of many Amazonian and Atlantic Forest birds extend considerably into the gallery forests of the Cerrado, some of them for >500 km. Likewise, the opposite is true for some Cerrado species, which extend their ranges dozens of kilometres within adjacent biogeographical regions. Some of these marginal populations can eventually be maintained by high immigration rates from high-quality habitats found in the core of the species distribution (Pinho et al. 2016) in a source–sink population structure (Kawecki 2008).

Given these challenges, we established two clear-cut criteria that a taxon must meet to be considered endemic to the Cerrado. Firstly, ≥90% of the taxon geographical range should fall within the limits of the Cerrado. This threshold is based on previous studies about regional endemism (Médail and Baumel 2018, Lima et al. 2020). Secondly, the few occurrences into adjacent biogeographical regions (which should represent <10% of the range of the species) ought to fall within a buffer of 100 km around the limits of the Cerrado. This value is based on the mean width of the transition zones between the Cerrado and adjacent biogeographical regions (Eiten 1972, Ackerly et al. 1989).

To measure the degree of overlap between the range of a taxon and the Cerrado biogeographical region, we created a grid of 0.25° × 0.25° cells (~27 km × 27 km) in QGIS (QGIS Development Team 2021) and overlayed it with the Cerrado map. To check whether a given taxon range met the first criterion established here, we used the ‘Join attributes by location’ tool in QGIS to estimate the proportion of cells with occurrences that fell within the limits of the Cerrado. To check whether the second criterion was met, we inspected the maps visually to see whether any record fell beyond the 100 km buffer around the limits of the Cerrado. We then used the ‘Measure line’ tool in QGIS to measure manually how far each taxon extended its range into other biogeographical regions.

Detecting areas of endemism

Some endemic taxa are widespread within a biogeographical region. They are the ones that can be used to set apart large biogeographical regions, such as the Cerrado. However, areas of endemism are nested systems, with less inclusive areas fitting within a more inclusive one (Crother and Murray 2011). Thus, if some endemic taxa occupy only part of the region and their ranges overlap, it would be possible to identify the smallest areas of endemism within large biogeographical regions. Therefore, we considered an area of endemism as an area of non-random distributional congruence among two or more taxa, which requires extensive sympatry but not complete agreement in range (Morrone 1994). To detect areas of endemism, we used the geographical interpolation of endemism analysis, a method based on the overlap between the distribution of those species of interest through a kernel interpolation of the centroids of their distributions and the areas of their ranges (Oliveira et al. 2015). This analysis was conducted in ArcGIS v.10.6 (ESRI 2017) using the toolbox ‘GIE’ developed by Oliveira et al. (2015).

Taxonomic approaches

To compare how different taxonomic approaches influence the number of endemic taxa in the Cerrado and the location of areas of endemism within this large region, we organized all species and subspecies considered endemic to the Cerrado into three groups of taxonomic units: (i) species as traditionally recognized under the BSC; (ii) subspecies as traditionally recognized under the BSC; and (iii) species as recognized in our revised alternative taxonomy. For that, we recognized only monotypic species under the general lineage concept of species (GLCS) (de Queiroz 1998). According to the GLCS, biological properties, such as intrinsic reproductive isolation and reciprocal monophyly, are only operational criteria to apply the concept in practice, not being requirements to delimit species (de Queiroz 1999, 2007, Aleixo 2023). We recognized only monotypic species because we share the view that, according to the GLCS, ‘subspecies are incompletely separated lineages within a more inclusive lineage’ and should not be given a taxonomic rank (de Queiroz 2020).

We used the checklist of Dickinson (2003) as a taxonomic reference to identify the taxa endemic to the Cerrado using traditional taxonomy at the species level (BSC-species) and the subspecies level (BSC-subspecies). This checklist relies on the BSC and encompasses all species and subspecies of the world as traditionally recognized. To identify the monotypic species endemic to the Cerrado using a revised alternative taxonomy, L.E.L. carried out detailed taxonomic revisions based on plumage and morphometric features of museum specimens. To this end, almost 3000 museum specimens were examined to assess plumage colour, patterns, and morphometric characters (such as wing, tail, tarsus, and culmen length). More details about the methods used in these taxonomic revisions can be found in the papers by Lopes and Gonzaga (2014, 2016a, b) and Lopes et al. (2017), among others.

Results

Levels of endemicity

Using the traditional taxonomy at the species level as taxonomic units (BSC-species), we identified 60 species as potentially endemic to the Cerrado (Supporting Information, Table S1). After an exhaustive review of the geographical range of these species, we found that 49 of those 60 species could not be considered Cerrado endemics (Supporting Information Table S1; Appendix S1) because their ranges extend beyond the thresholds established here. Therefore, only 11 species fulfilled all criteria to be endemic to the Cerrado (Table 1; Supporting Information, Appendix S3). When considering the traditional taxonomy at the subspecies level as taxonomic units (BSC-subspecies), 108 bird taxa were identified as potentially endemic to the Cerrado (Supporting Information, Tables S1 and S2). After checking their ranges, we found that only 31 of those 108 taxa fulfilled all criteria to be Cerrado endemics (Supporting Information, Appendix S4). Finally, when using only those species recognized under the revised alternative taxonomy, we identified 19 Cerrado endemics (Tables 1 and 2).

Table 1.

Species and subspecies of birds considered potentially endemic to the Cerrado. All the taxa included in this table had their geographical range revised in detail and, if necessary, their taxonomic status revised. The traditional taxonomy is based on the work of Dickinson (2003) and the revised alternative taxonomy on the taxonomic studies summarized in the Supporting Information (Appendix S2).

Traditional taxonomyRevised alternative taxonomyNumber of grid cells (0.25° × 0.25°) with occurrenceEndemicity status
SpeciesSubspeciesSpeciesCerradoNon-CerradoTotalPercentage of range in CerradoFurthest record from the limits of the Cerrado (km)Traditional taxonomyRevised taxonomy
Crypturellus undulatus vermiculatusNot revised606660.91240Non-endemicNon-endemic
Nothura minorNothura minor362380.9570EndemicEndemic
Nothura maculosa majorInvalid211220.9570Endemic
Taoniscus nanusTaoniscus nanus313340.91420Non-endemicNon-endemic
Penelope ochrogasterPenelope ochrogaster5212640.81130Non-endemicNon-endemic
Chordeilles pusillus pusillusNot revised162180.89440Non-endemicNon-endemic
Nyctiprogne vielliardiNyctiprogne vielliardi7180.8820Non-endemicNon-endemic
Eleothreptus candicansEleothreptus candicans4370.57450Non-endemicNon-endemic
Phaethornis nattereria3416500.68370Non-endemic
Phaethornis nattereri1611270.59370Non-endemic
Phaethornis maranhaoensisb185230.78100Non-endemic
Phaethornis pretrei schwartibInvalid0220115Non-endemic
Augastes scutatusAugastes scutatus333360.9250EndemicEndemic
Augastes s. scutatusMonotypic2402415Endemic
Augates s. soaresiInvalid6280.7550Non-endemic
Augastes s. ilseaeInvalid3140.7525Non-endemic
Augastes lumachellaAugastes lumachella120210.05140Non-endemicNon-endemic
Colibri delphinae grenwaltibInvalid0110130Non-endemic
Heliactin bilophusHeliactin bilophus118201380.861200Non-endemicNon-endemic
Campylopterus largipennis diamantinensis232250.9230Endemic
Campylopterus diamantinensis121130.9230Endemic
Campylopterus calcirupicolac111120.9215Endemic
Piaya cayana cabanisiInvalid266320.81190Non-endemic
Patagioenas plumbea baeriNot revised121130.92250Non-endemicNon-endemic
Columbina cyanopisColumbina cyanopis50510EndemicEndemic
Uropelia campestrisUropelia campestris74281020.73840Non-endemicNon-endemic
Uropelia c. campestrisMonotypic569650.86840Non-endemic
Uropelia c. figginsiInvalid1819370.49550Non-endemic
Micropygia schomburgkiiMicropygia schomburgkii3559940.634200Non-endemicNon-endemic
Micropygia schomburgkii schomburgkii0414104200Non-endemic
Micropygia schomburgkii chapmaniInvalid3518530.66620Non-endemic
Laterallus xenopterusLaterallus xenopterus109190.53610Non-endemicNon-endemic
Malacoptila striata minorMalacoptila minor11011100%20EndemicEndemic
Picumnus albosquamatusNot revised222592810.79650Non-endemicNon-endemic
Picumnus a. albosquamatusNot revised1132430.26650Non-endemicNon-endemic
Picumnus a. guttiferNot revised211272380.89270Non-endemicNon-endemic
Picumnus fuscusPicumnus fuscus0550280Non-endemicNon-endemic
Celeus spectabilis obrieniCeleus obrieni451460.9855EndemicEndemic
Alipiopsitta xanthopsAlipiopsitta xanthops128161440.89250Non-endemicNon-endemic
Pyrrhura pfrimeriPyrrhura pfrimeri1701710EndemicEndemic
Geositta poecilopteraGeositta poeciloptera523540.9695EndemicEndemic
Sittasomus griseicapillus transitivusNot revised813210.38660Non-endemicNon-endemic
Xiphocolaptes falcirostris franciscanusNot revised5160.8315Non-endemicNon-endemic
Lepidocolaptes squamatus wagleriLepidocolaptes wagleri162180.8925Non-endemicNon-endemic
 Furnarius leucopus araguaiaeInvalid20210Endemic
Cinclodes pabstiNon-endemicNon-endemic
Cinclodes espinhacensisd50510Endemic
Syndactyla dimidiataSyndactyla dimidiata425460.9175EndemicEndemic
Syndactyla d. dimidiataMonotypic50510Endemic
Syndactyla d. baeriInvalid374410.975Endemic
 Dendroma rufa chapadensisInvalid1901910Endemic
Clibanornis rectirostrisClibanornis rectirostris139181570.89110Non-endemicNon-endemic
Asthenes luizaeAsthenes luizae1901910EndemicEndemic
Synalaxis albilora4334770.55230Non-endemic
Synallaxis a. albiloraSynallaxis albilora2734610.44230Non-endemicNon-endemic
Synallaxis a. simoniSynallaxis simoni1601610EndemicEndemic
Formicivora grantsauiFormicivora grantsaui0440150Non-endemicNon-endemic
Herpsilochmus longirostrisHerpsilochmus longirostris140211610.87450Non-endemicNon-endemic
Dysithamnus mentalis affinisNot revised425470.89140Non-endemicNon-endemic
Thamnophilus doliatus difficilisInvalid382400.9575Endemic
Thamnophilus caerulescens ochraceiventerInvalid1001010Endemic
Thamnophilus torquatusThamnophilus torquatus111461570.71750Non-endemicNon-endemic
Sakesphorus luctuosus araguayaeInvalid101110.9140Endemic
Cercomacra ferdinandiCercomacra ferdinandi332350.9465EndemicEndemic
Scytalopus diamantinensisScytalopus diamantinensis0660190Non-endemicNon-endemic
Scytalopus novacapitalisScytalopus novacapitalis1301310EndemicEndemic
Melanopareia torquata142231650.86370Non-endemic
Melanopareia t. torquataMelanopareia torquata5911700.84370Non-endemicNon-endemic
Melanopareia t. rufescensInvalid743770.9695Endemic
Melanopareia t. bitorquataMelanopareia bitorquata99180.5250Non-endemicNon-endemic
Phyllomyias reiseriPhyllomyias reiseri213240.8870Non-endemicNon-endemic
Suiriri suiriri burmeisteriNot revised88251130.781200Non-endemicNon-endemic
Polystictus superciliarisPolystictus superciliaris3415490.69175Non-endemicNon-endemic
Euscarthmus rufomarginatusEuscarthmus rufomarginatus4112530.771200Non-endemicNon-endemic
Euscarthmus r. rufomarginatus Monotypic4111520.79440Non-endemic
Euscarthmus r. savannophilusInvalid01101200Non-endemic
Phylloscartes roquetteiPhylloscartes roquettei193220.86120Non-endemicNon-endemic
Guyramemua affineGuyramemua affine404440.911200Non-endemicNon-endemic
Poecilotriccus latirostris ochropterusNot revised309390.77570Non-endemicNon-endemic
Platyrinchus mystaceus bifasciatusNot revised157220.68450Non-endemicNon-endemic
Knipolegus nigerrimus hoflingaeInvalid0220170Non-endemic
Knipolegus aterrimus franciscanusKnipolegus franciscanus215260.8140Non-endemicNon-endemic
Sirystes sibilator atimastusInvalid1701710Endemic
Antilophia galeataAntilophia galeata282203020.93130Non-endemicNon-endemic
Cyanocorax cristatellusCyanocorax cristatellus331804110.81370Non-endemicNon-endemic
Pheugopedius genibarbis intercedensNot revised4115560.73450Non-endemicNon-endemic
Arremon franciscanusArremon franciscanus68140.43140Non-endemicNon-endemic
Arremon flavirostris flavirostrisArremon flavirostris113111240.9155EndemicEndemic
Icterus cayanensis valenciobuenoiInvalid383410.9370Endemic
Myiothlypis leucophrysMyiothlypis leucophrys842860.9815EndemicEndemic
Basileuterus culicivorus hypoleucusNot revised138301680.82200Non-endemicNon-endemic
Charitospiza eucosmaCharitospiza eucosma12461300.95640Non-endemicNon-endemic
Embernagra longicaudaEmbernagra longicauda4417620.71170Non-endemicNon-endemic
Porphyrospiza caerulescensPorphyrospiza caerulescens112131260.89650Non-endemicNon-endemic
Saltatricula atricollisSaltatricula atricollis289693580.81650Non-endemicNon-endemic
Coereba flaveola alleniInvalid1901910Endemic
Conothraupis mesoleucaConothraupis mesoleuca8190.89320Non-endemicNon-endemic
Loriotus cristatus nattereriInvalid10110Endemic
Ramphocelus carbo centralisNot revised79261050.75130Non-endemicNon-endemic
Sporophila melanopsInvalid11110Endemic
Sporophila nigrorufaSporophila nigrorufa710170.41340Non-endemicNon-endemic
Cypsnagra hirundinaceaC. hirundinacea133431760.761200Non-endemicNon-endemic
Cypsnagra h. hirundinaceaNot revised92111030.89170Non-endemicNon-endemic
Cypsnagra h. pallidigulaNot revised4132730.561200Non-endemicNon-endemic
Microspingus cinereusMicrospingus cinereus587650.89280Non-endemicNon-endemic
Sicalis citrina citrinaNot revised6517820.79440Non-endemicNon-endemic
Neothraupis fasciataNeothraupis fasciata155161710.911200Non-endemicNon-endemic
Schistochlamys ruficapillus sickiInvalid126180.67660Non-endemic
Paroaria baeri192210.95140Non-endemic
Paroaria b. baeriParoaria baeri1901910EndemicEndemic
Paroaria b. xinguensisParoaria xinguensis0220140Non-endemicNon-endemic
Stilpnia cyanicollis albotibialisStilpnia albotibialis10110EndemicEndemic
Stilpnia cayana margaritaeInvalid70710Endemic
Stilpnia cayana sincipitalisInvalid312330.94120Non-endemic
Traditional taxonomyRevised alternative taxonomyNumber of grid cells (0.25° × 0.25°) with occurrenceEndemicity status
SpeciesSubspeciesSpeciesCerradoNon-CerradoTotalPercentage of range in CerradoFurthest record from the limits of the Cerrado (km)Traditional taxonomyRevised taxonomy
Crypturellus undulatus vermiculatusNot revised606660.91240Non-endemicNon-endemic
Nothura minorNothura minor362380.9570EndemicEndemic
Nothura maculosa majorInvalid211220.9570Endemic
Taoniscus nanusTaoniscus nanus313340.91420Non-endemicNon-endemic
Penelope ochrogasterPenelope ochrogaster5212640.81130Non-endemicNon-endemic
Chordeilles pusillus pusillusNot revised162180.89440Non-endemicNon-endemic
Nyctiprogne vielliardiNyctiprogne vielliardi7180.8820Non-endemicNon-endemic
Eleothreptus candicansEleothreptus candicans4370.57450Non-endemicNon-endemic
Phaethornis nattereria3416500.68370Non-endemic
Phaethornis nattereri1611270.59370Non-endemic
Phaethornis maranhaoensisb185230.78100Non-endemic
Phaethornis pretrei schwartibInvalid0220115Non-endemic
Augastes scutatusAugastes scutatus333360.9250EndemicEndemic
Augastes s. scutatusMonotypic2402415Endemic
Augates s. soaresiInvalid6280.7550Non-endemic
Augastes s. ilseaeInvalid3140.7525Non-endemic
Augastes lumachellaAugastes lumachella120210.05140Non-endemicNon-endemic
Colibri delphinae grenwaltibInvalid0110130Non-endemic
Heliactin bilophusHeliactin bilophus118201380.861200Non-endemicNon-endemic
Campylopterus largipennis diamantinensis232250.9230Endemic
Campylopterus diamantinensis121130.9230Endemic
Campylopterus calcirupicolac111120.9215Endemic
Piaya cayana cabanisiInvalid266320.81190Non-endemic
Patagioenas plumbea baeriNot revised121130.92250Non-endemicNon-endemic
Columbina cyanopisColumbina cyanopis50510EndemicEndemic
Uropelia campestrisUropelia campestris74281020.73840Non-endemicNon-endemic
Uropelia c. campestrisMonotypic569650.86840Non-endemic
Uropelia c. figginsiInvalid1819370.49550Non-endemic
Micropygia schomburgkiiMicropygia schomburgkii3559940.634200Non-endemicNon-endemic
Micropygia schomburgkii schomburgkii0414104200Non-endemic
Micropygia schomburgkii chapmaniInvalid3518530.66620Non-endemic
Laterallus xenopterusLaterallus xenopterus109190.53610Non-endemicNon-endemic
Malacoptila striata minorMalacoptila minor11011100%20EndemicEndemic
Picumnus albosquamatusNot revised222592810.79650Non-endemicNon-endemic
Picumnus a. albosquamatusNot revised1132430.26650Non-endemicNon-endemic
Picumnus a. guttiferNot revised211272380.89270Non-endemicNon-endemic
Picumnus fuscusPicumnus fuscus0550280Non-endemicNon-endemic
Celeus spectabilis obrieniCeleus obrieni451460.9855EndemicEndemic
Alipiopsitta xanthopsAlipiopsitta xanthops128161440.89250Non-endemicNon-endemic
Pyrrhura pfrimeriPyrrhura pfrimeri1701710EndemicEndemic
Geositta poecilopteraGeositta poeciloptera523540.9695EndemicEndemic
Sittasomus griseicapillus transitivusNot revised813210.38660Non-endemicNon-endemic
Xiphocolaptes falcirostris franciscanusNot revised5160.8315Non-endemicNon-endemic
Lepidocolaptes squamatus wagleriLepidocolaptes wagleri162180.8925Non-endemicNon-endemic
 Furnarius leucopus araguaiaeInvalid20210Endemic
Cinclodes pabstiNon-endemicNon-endemic
Cinclodes espinhacensisd50510Endemic
Syndactyla dimidiataSyndactyla dimidiata425460.9175EndemicEndemic
Syndactyla d. dimidiataMonotypic50510Endemic
Syndactyla d. baeriInvalid374410.975Endemic
 Dendroma rufa chapadensisInvalid1901910Endemic
Clibanornis rectirostrisClibanornis rectirostris139181570.89110Non-endemicNon-endemic
Asthenes luizaeAsthenes luizae1901910EndemicEndemic
Synalaxis albilora4334770.55230Non-endemic
Synallaxis a. albiloraSynallaxis albilora2734610.44230Non-endemicNon-endemic
Synallaxis a. simoniSynallaxis simoni1601610EndemicEndemic
Formicivora grantsauiFormicivora grantsaui0440150Non-endemicNon-endemic
Herpsilochmus longirostrisHerpsilochmus longirostris140211610.87450Non-endemicNon-endemic
Dysithamnus mentalis affinisNot revised425470.89140Non-endemicNon-endemic
Thamnophilus doliatus difficilisInvalid382400.9575Endemic
Thamnophilus caerulescens ochraceiventerInvalid1001010Endemic
Thamnophilus torquatusThamnophilus torquatus111461570.71750Non-endemicNon-endemic
Sakesphorus luctuosus araguayaeInvalid101110.9140Endemic
Cercomacra ferdinandiCercomacra ferdinandi332350.9465EndemicEndemic
Scytalopus diamantinensisScytalopus diamantinensis0660190Non-endemicNon-endemic
Scytalopus novacapitalisScytalopus novacapitalis1301310EndemicEndemic
Melanopareia torquata142231650.86370Non-endemic
Melanopareia t. torquataMelanopareia torquata5911700.84370Non-endemicNon-endemic
Melanopareia t. rufescensInvalid743770.9695Endemic
Melanopareia t. bitorquataMelanopareia bitorquata99180.5250Non-endemicNon-endemic
Phyllomyias reiseriPhyllomyias reiseri213240.8870Non-endemicNon-endemic
Suiriri suiriri burmeisteriNot revised88251130.781200Non-endemicNon-endemic
Polystictus superciliarisPolystictus superciliaris3415490.69175Non-endemicNon-endemic
Euscarthmus rufomarginatusEuscarthmus rufomarginatus4112530.771200Non-endemicNon-endemic
Euscarthmus r. rufomarginatus Monotypic4111520.79440Non-endemic
Euscarthmus r. savannophilusInvalid01101200Non-endemic
Phylloscartes roquetteiPhylloscartes roquettei193220.86120Non-endemicNon-endemic
Guyramemua affineGuyramemua affine404440.911200Non-endemicNon-endemic
Poecilotriccus latirostris ochropterusNot revised309390.77570Non-endemicNon-endemic
Platyrinchus mystaceus bifasciatusNot revised157220.68450Non-endemicNon-endemic
Knipolegus nigerrimus hoflingaeInvalid0220170Non-endemic
Knipolegus aterrimus franciscanusKnipolegus franciscanus215260.8140Non-endemicNon-endemic
Sirystes sibilator atimastusInvalid1701710Endemic
Antilophia galeataAntilophia galeata282203020.93130Non-endemicNon-endemic
Cyanocorax cristatellusCyanocorax cristatellus331804110.81370Non-endemicNon-endemic
Pheugopedius genibarbis intercedensNot revised4115560.73450Non-endemicNon-endemic
Arremon franciscanusArremon franciscanus68140.43140Non-endemicNon-endemic
Arremon flavirostris flavirostrisArremon flavirostris113111240.9155EndemicEndemic
Icterus cayanensis valenciobuenoiInvalid383410.9370Endemic
Myiothlypis leucophrysMyiothlypis leucophrys842860.9815EndemicEndemic
Basileuterus culicivorus hypoleucusNot revised138301680.82200Non-endemicNon-endemic
Charitospiza eucosmaCharitospiza eucosma12461300.95640Non-endemicNon-endemic
Embernagra longicaudaEmbernagra longicauda4417620.71170Non-endemicNon-endemic
Porphyrospiza caerulescensPorphyrospiza caerulescens112131260.89650Non-endemicNon-endemic
Saltatricula atricollisSaltatricula atricollis289693580.81650Non-endemicNon-endemic
Coereba flaveola alleniInvalid1901910Endemic
Conothraupis mesoleucaConothraupis mesoleuca8190.89320Non-endemicNon-endemic
Loriotus cristatus nattereriInvalid10110Endemic
Ramphocelus carbo centralisNot revised79261050.75130Non-endemicNon-endemic
Sporophila melanopsInvalid11110Endemic
Sporophila nigrorufaSporophila nigrorufa710170.41340Non-endemicNon-endemic
Cypsnagra hirundinaceaC. hirundinacea133431760.761200Non-endemicNon-endemic
Cypsnagra h. hirundinaceaNot revised92111030.89170Non-endemicNon-endemic
Cypsnagra h. pallidigulaNot revised4132730.561200Non-endemicNon-endemic
Microspingus cinereusMicrospingus cinereus587650.89280Non-endemicNon-endemic
Sicalis citrina citrinaNot revised6517820.79440Non-endemicNon-endemic
Neothraupis fasciataNeothraupis fasciata155161710.911200Non-endemicNon-endemic
Schistochlamys ruficapillus sickiInvalid126180.67660Non-endemic
Paroaria baeri192210.95140Non-endemic
Paroaria b. baeriParoaria baeri1901910EndemicEndemic
Paroaria b. xinguensisParoaria xinguensis0220140Non-endemicNon-endemic
Stilpnia cyanicollis albotibialisStilpnia albotibialis10110EndemicEndemic
Stilpnia cayana margaritaeInvalid70710Endemic
Stilpnia cayana sincipitalisInvalid312330.94120Non-endemic

Polytypic species according to the traditional taxonomy.

aThe taxonomy of the Phaethornis nattereri complex is problematic, with some authors considering P. maranhaoensis as a subspecies of P. nattereri or as inseparable from P. nattereri (Hinkelmann 1988, Piacentini 2011).

bTaxon not recognized by Dickinson (2003).

cCampylopterus calcirupicola is a recently described species whose populations have been, until recently, identified as belonging to Campylopterus largipennis diamantinensis (Silva 1990).

dCinclodes espinhacensis is a recently described species whose populations have been, until recently, identified as belonging to Cinclodes pabsti (Freitas et al. 2008).

Table 1.

Species and subspecies of birds considered potentially endemic to the Cerrado. All the taxa included in this table had their geographical range revised in detail and, if necessary, their taxonomic status revised. The traditional taxonomy is based on the work of Dickinson (2003) and the revised alternative taxonomy on the taxonomic studies summarized in the Supporting Information (Appendix S2).

Traditional taxonomyRevised alternative taxonomyNumber of grid cells (0.25° × 0.25°) with occurrenceEndemicity status
SpeciesSubspeciesSpeciesCerradoNon-CerradoTotalPercentage of range in CerradoFurthest record from the limits of the Cerrado (km)Traditional taxonomyRevised taxonomy
Crypturellus undulatus vermiculatusNot revised606660.91240Non-endemicNon-endemic
Nothura minorNothura minor362380.9570EndemicEndemic
Nothura maculosa majorInvalid211220.9570Endemic
Taoniscus nanusTaoniscus nanus313340.91420Non-endemicNon-endemic
Penelope ochrogasterPenelope ochrogaster5212640.81130Non-endemicNon-endemic
Chordeilles pusillus pusillusNot revised162180.89440Non-endemicNon-endemic
Nyctiprogne vielliardiNyctiprogne vielliardi7180.8820Non-endemicNon-endemic
Eleothreptus candicansEleothreptus candicans4370.57450Non-endemicNon-endemic
Phaethornis nattereria3416500.68370Non-endemic
Phaethornis nattereri1611270.59370Non-endemic
Phaethornis maranhaoensisb185230.78100Non-endemic
Phaethornis pretrei schwartibInvalid0220115Non-endemic
Augastes scutatusAugastes scutatus333360.9250EndemicEndemic
Augastes s. scutatusMonotypic2402415Endemic
Augates s. soaresiInvalid6280.7550Non-endemic
Augastes s. ilseaeInvalid3140.7525Non-endemic
Augastes lumachellaAugastes lumachella120210.05140Non-endemicNon-endemic
Colibri delphinae grenwaltibInvalid0110130Non-endemic
Heliactin bilophusHeliactin bilophus118201380.861200Non-endemicNon-endemic
Campylopterus largipennis diamantinensis232250.9230Endemic
Campylopterus diamantinensis121130.9230Endemic
Campylopterus calcirupicolac111120.9215Endemic
Piaya cayana cabanisiInvalid266320.81190Non-endemic
Patagioenas plumbea baeriNot revised121130.92250Non-endemicNon-endemic
Columbina cyanopisColumbina cyanopis50510EndemicEndemic
Uropelia campestrisUropelia campestris74281020.73840Non-endemicNon-endemic
Uropelia c. campestrisMonotypic569650.86840Non-endemic
Uropelia c. figginsiInvalid1819370.49550Non-endemic
Micropygia schomburgkiiMicropygia schomburgkii3559940.634200Non-endemicNon-endemic
Micropygia schomburgkii schomburgkii0414104200Non-endemic
Micropygia schomburgkii chapmaniInvalid3518530.66620Non-endemic
Laterallus xenopterusLaterallus xenopterus109190.53610Non-endemicNon-endemic
Malacoptila striata minorMalacoptila minor11011100%20EndemicEndemic
Picumnus albosquamatusNot revised222592810.79650Non-endemicNon-endemic
Picumnus a. albosquamatusNot revised1132430.26650Non-endemicNon-endemic
Picumnus a. guttiferNot revised211272380.89270Non-endemicNon-endemic
Picumnus fuscusPicumnus fuscus0550280Non-endemicNon-endemic
Celeus spectabilis obrieniCeleus obrieni451460.9855EndemicEndemic
Alipiopsitta xanthopsAlipiopsitta xanthops128161440.89250Non-endemicNon-endemic
Pyrrhura pfrimeriPyrrhura pfrimeri1701710EndemicEndemic
Geositta poecilopteraGeositta poeciloptera523540.9695EndemicEndemic
Sittasomus griseicapillus transitivusNot revised813210.38660Non-endemicNon-endemic
Xiphocolaptes falcirostris franciscanusNot revised5160.8315Non-endemicNon-endemic
Lepidocolaptes squamatus wagleriLepidocolaptes wagleri162180.8925Non-endemicNon-endemic
 Furnarius leucopus araguaiaeInvalid20210Endemic
Cinclodes pabstiNon-endemicNon-endemic
Cinclodes espinhacensisd50510Endemic
Syndactyla dimidiataSyndactyla dimidiata425460.9175EndemicEndemic
Syndactyla d. dimidiataMonotypic50510Endemic
Syndactyla d. baeriInvalid374410.975Endemic
 Dendroma rufa chapadensisInvalid1901910Endemic
Clibanornis rectirostrisClibanornis rectirostris139181570.89110Non-endemicNon-endemic
Asthenes luizaeAsthenes luizae1901910EndemicEndemic
Synalaxis albilora4334770.55230Non-endemic
Synallaxis a. albiloraSynallaxis albilora2734610.44230Non-endemicNon-endemic
Synallaxis a. simoniSynallaxis simoni1601610EndemicEndemic
Formicivora grantsauiFormicivora grantsaui0440150Non-endemicNon-endemic
Herpsilochmus longirostrisHerpsilochmus longirostris140211610.87450Non-endemicNon-endemic
Dysithamnus mentalis affinisNot revised425470.89140Non-endemicNon-endemic
Thamnophilus doliatus difficilisInvalid382400.9575Endemic
Thamnophilus caerulescens ochraceiventerInvalid1001010Endemic
Thamnophilus torquatusThamnophilus torquatus111461570.71750Non-endemicNon-endemic
Sakesphorus luctuosus araguayaeInvalid101110.9140Endemic
Cercomacra ferdinandiCercomacra ferdinandi332350.9465EndemicEndemic
Scytalopus diamantinensisScytalopus diamantinensis0660190Non-endemicNon-endemic
Scytalopus novacapitalisScytalopus novacapitalis1301310EndemicEndemic
Melanopareia torquata142231650.86370Non-endemic
Melanopareia t. torquataMelanopareia torquata5911700.84370Non-endemicNon-endemic
Melanopareia t. rufescensInvalid743770.9695Endemic
Melanopareia t. bitorquataMelanopareia bitorquata99180.5250Non-endemicNon-endemic
Phyllomyias reiseriPhyllomyias reiseri213240.8870Non-endemicNon-endemic
Suiriri suiriri burmeisteriNot revised88251130.781200Non-endemicNon-endemic
Polystictus superciliarisPolystictus superciliaris3415490.69175Non-endemicNon-endemic
Euscarthmus rufomarginatusEuscarthmus rufomarginatus4112530.771200Non-endemicNon-endemic
Euscarthmus r. rufomarginatus Monotypic4111520.79440Non-endemic
Euscarthmus r. savannophilusInvalid01101200Non-endemic
Phylloscartes roquetteiPhylloscartes roquettei193220.86120Non-endemicNon-endemic
Guyramemua affineGuyramemua affine404440.911200Non-endemicNon-endemic
Poecilotriccus latirostris ochropterusNot revised309390.77570Non-endemicNon-endemic
Platyrinchus mystaceus bifasciatusNot revised157220.68450Non-endemicNon-endemic
Knipolegus nigerrimus hoflingaeInvalid0220170Non-endemic
Knipolegus aterrimus franciscanusKnipolegus franciscanus215260.8140Non-endemicNon-endemic
Sirystes sibilator atimastusInvalid1701710Endemic
Antilophia galeataAntilophia galeata282203020.93130Non-endemicNon-endemic
Cyanocorax cristatellusCyanocorax cristatellus331804110.81370Non-endemicNon-endemic
Pheugopedius genibarbis intercedensNot revised4115560.73450Non-endemicNon-endemic
Arremon franciscanusArremon franciscanus68140.43140Non-endemicNon-endemic
Arremon flavirostris flavirostrisArremon flavirostris113111240.9155EndemicEndemic
Icterus cayanensis valenciobuenoiInvalid383410.9370Endemic
Myiothlypis leucophrysMyiothlypis leucophrys842860.9815EndemicEndemic
Basileuterus culicivorus hypoleucusNot revised138301680.82200Non-endemicNon-endemic
Charitospiza eucosmaCharitospiza eucosma12461300.95640Non-endemicNon-endemic
Embernagra longicaudaEmbernagra longicauda4417620.71170Non-endemicNon-endemic
Porphyrospiza caerulescensPorphyrospiza caerulescens112131260.89650Non-endemicNon-endemic
Saltatricula atricollisSaltatricula atricollis289693580.81650Non-endemicNon-endemic
Coereba flaveola alleniInvalid1901910Endemic
Conothraupis mesoleucaConothraupis mesoleuca8190.89320Non-endemicNon-endemic
Loriotus cristatus nattereriInvalid10110Endemic
Ramphocelus carbo centralisNot revised79261050.75130Non-endemicNon-endemic
Sporophila melanopsInvalid11110Endemic
Sporophila nigrorufaSporophila nigrorufa710170.41340Non-endemicNon-endemic
Cypsnagra hirundinaceaC. hirundinacea133431760.761200Non-endemicNon-endemic
Cypsnagra h. hirundinaceaNot revised92111030.89170Non-endemicNon-endemic
Cypsnagra h. pallidigulaNot revised4132730.561200Non-endemicNon-endemic
Microspingus cinereusMicrospingus cinereus587650.89280Non-endemicNon-endemic
Sicalis citrina citrinaNot revised6517820.79440Non-endemicNon-endemic
Neothraupis fasciataNeothraupis fasciata155161710.911200Non-endemicNon-endemic
Schistochlamys ruficapillus sickiInvalid126180.67660Non-endemic
Paroaria baeri192210.95140Non-endemic
Paroaria b. baeriParoaria baeri1901910EndemicEndemic
Paroaria b. xinguensisParoaria xinguensis0220140Non-endemicNon-endemic
Stilpnia cyanicollis albotibialisStilpnia albotibialis10110EndemicEndemic
Stilpnia cayana margaritaeInvalid70710Endemic
Stilpnia cayana sincipitalisInvalid312330.94120Non-endemic
Traditional taxonomyRevised alternative taxonomyNumber of grid cells (0.25° × 0.25°) with occurrenceEndemicity status
SpeciesSubspeciesSpeciesCerradoNon-CerradoTotalPercentage of range in CerradoFurthest record from the limits of the Cerrado (km)Traditional taxonomyRevised taxonomy
Crypturellus undulatus vermiculatusNot revised606660.91240Non-endemicNon-endemic
Nothura minorNothura minor362380.9570EndemicEndemic
Nothura maculosa majorInvalid211220.9570Endemic
Taoniscus nanusTaoniscus nanus313340.91420Non-endemicNon-endemic
Penelope ochrogasterPenelope ochrogaster5212640.81130Non-endemicNon-endemic
Chordeilles pusillus pusillusNot revised162180.89440Non-endemicNon-endemic
Nyctiprogne vielliardiNyctiprogne vielliardi7180.8820Non-endemicNon-endemic
Eleothreptus candicansEleothreptus candicans4370.57450Non-endemicNon-endemic
Phaethornis nattereria3416500.68370Non-endemic
Phaethornis nattereri1611270.59370Non-endemic
Phaethornis maranhaoensisb185230.78100Non-endemic
Phaethornis pretrei schwartibInvalid0220115Non-endemic
Augastes scutatusAugastes scutatus333360.9250EndemicEndemic
Augastes s. scutatusMonotypic2402415Endemic
Augates s. soaresiInvalid6280.7550Non-endemic
Augastes s. ilseaeInvalid3140.7525Non-endemic
Augastes lumachellaAugastes lumachella120210.05140Non-endemicNon-endemic
Colibri delphinae grenwaltibInvalid0110130Non-endemic
Heliactin bilophusHeliactin bilophus118201380.861200Non-endemicNon-endemic
Campylopterus largipennis diamantinensis232250.9230Endemic
Campylopterus diamantinensis121130.9230Endemic
Campylopterus calcirupicolac111120.9215Endemic
Piaya cayana cabanisiInvalid266320.81190Non-endemic
Patagioenas plumbea baeriNot revised121130.92250Non-endemicNon-endemic
Columbina cyanopisColumbina cyanopis50510EndemicEndemic
Uropelia campestrisUropelia campestris74281020.73840Non-endemicNon-endemic
Uropelia c. campestrisMonotypic569650.86840Non-endemic
Uropelia c. figginsiInvalid1819370.49550Non-endemic
Micropygia schomburgkiiMicropygia schomburgkii3559940.634200Non-endemicNon-endemic
Micropygia schomburgkii schomburgkii0414104200Non-endemic
Micropygia schomburgkii chapmaniInvalid3518530.66620Non-endemic
Laterallus xenopterusLaterallus xenopterus109190.53610Non-endemicNon-endemic
Malacoptila striata minorMalacoptila minor11011100%20EndemicEndemic
Picumnus albosquamatusNot revised222592810.79650Non-endemicNon-endemic
Picumnus a. albosquamatusNot revised1132430.26650Non-endemicNon-endemic
Picumnus a. guttiferNot revised211272380.89270Non-endemicNon-endemic
Picumnus fuscusPicumnus fuscus0550280Non-endemicNon-endemic
Celeus spectabilis obrieniCeleus obrieni451460.9855EndemicEndemic
Alipiopsitta xanthopsAlipiopsitta xanthops128161440.89250Non-endemicNon-endemic
Pyrrhura pfrimeriPyrrhura pfrimeri1701710EndemicEndemic
Geositta poecilopteraGeositta poeciloptera523540.9695EndemicEndemic
Sittasomus griseicapillus transitivusNot revised813210.38660Non-endemicNon-endemic
Xiphocolaptes falcirostris franciscanusNot revised5160.8315Non-endemicNon-endemic
Lepidocolaptes squamatus wagleriLepidocolaptes wagleri162180.8925Non-endemicNon-endemic
 Furnarius leucopus araguaiaeInvalid20210Endemic
Cinclodes pabstiNon-endemicNon-endemic
Cinclodes espinhacensisd50510Endemic
Syndactyla dimidiataSyndactyla dimidiata425460.9175EndemicEndemic
Syndactyla d. dimidiataMonotypic50510Endemic
Syndactyla d. baeriInvalid374410.975Endemic
 Dendroma rufa chapadensisInvalid1901910Endemic
Clibanornis rectirostrisClibanornis rectirostris139181570.89110Non-endemicNon-endemic
Asthenes luizaeAsthenes luizae1901910EndemicEndemic
Synalaxis albilora4334770.55230Non-endemic
Synallaxis a. albiloraSynallaxis albilora2734610.44230Non-endemicNon-endemic
Synallaxis a. simoniSynallaxis simoni1601610EndemicEndemic
Formicivora grantsauiFormicivora grantsaui0440150Non-endemicNon-endemic
Herpsilochmus longirostrisHerpsilochmus longirostris140211610.87450Non-endemicNon-endemic
Dysithamnus mentalis affinisNot revised425470.89140Non-endemicNon-endemic
Thamnophilus doliatus difficilisInvalid382400.9575Endemic
Thamnophilus caerulescens ochraceiventerInvalid1001010Endemic
Thamnophilus torquatusThamnophilus torquatus111461570.71750Non-endemicNon-endemic
Sakesphorus luctuosus araguayaeInvalid101110.9140Endemic
Cercomacra ferdinandiCercomacra ferdinandi332350.9465EndemicEndemic
Scytalopus diamantinensisScytalopus diamantinensis0660190Non-endemicNon-endemic
Scytalopus novacapitalisScytalopus novacapitalis1301310EndemicEndemic
Melanopareia torquata142231650.86370Non-endemic
Melanopareia t. torquataMelanopareia torquata5911700.84370Non-endemicNon-endemic
Melanopareia t. rufescensInvalid743770.9695Endemic
Melanopareia t. bitorquataMelanopareia bitorquata99180.5250Non-endemicNon-endemic
Phyllomyias reiseriPhyllomyias reiseri213240.8870Non-endemicNon-endemic
Suiriri suiriri burmeisteriNot revised88251130.781200Non-endemicNon-endemic
Polystictus superciliarisPolystictus superciliaris3415490.69175Non-endemicNon-endemic
Euscarthmus rufomarginatusEuscarthmus rufomarginatus4112530.771200Non-endemicNon-endemic
Euscarthmus r. rufomarginatus Monotypic4111520.79440Non-endemic
Euscarthmus r. savannophilusInvalid01101200Non-endemic
Phylloscartes roquetteiPhylloscartes roquettei193220.86120Non-endemicNon-endemic
Guyramemua affineGuyramemua affine404440.911200Non-endemicNon-endemic
Poecilotriccus latirostris ochropterusNot revised309390.77570Non-endemicNon-endemic
Platyrinchus mystaceus bifasciatusNot revised157220.68450Non-endemicNon-endemic
Knipolegus nigerrimus hoflingaeInvalid0220170Non-endemic
Knipolegus aterrimus franciscanusKnipolegus franciscanus215260.8140Non-endemicNon-endemic
Sirystes sibilator atimastusInvalid1701710Endemic
Antilophia galeataAntilophia galeata282203020.93130Non-endemicNon-endemic
Cyanocorax cristatellusCyanocorax cristatellus331804110.81370Non-endemicNon-endemic
Pheugopedius genibarbis intercedensNot revised4115560.73450Non-endemicNon-endemic
Arremon franciscanusArremon franciscanus68140.43140Non-endemicNon-endemic
Arremon flavirostris flavirostrisArremon flavirostris113111240.9155EndemicEndemic
Icterus cayanensis valenciobuenoiInvalid383410.9370Endemic
Myiothlypis leucophrysMyiothlypis leucophrys842860.9815EndemicEndemic
Basileuterus culicivorus hypoleucusNot revised138301680.82200Non-endemicNon-endemic
Charitospiza eucosmaCharitospiza eucosma12461300.95640Non-endemicNon-endemic
Embernagra longicaudaEmbernagra longicauda4417620.71170Non-endemicNon-endemic
Porphyrospiza caerulescensPorphyrospiza caerulescens112131260.89650Non-endemicNon-endemic
Saltatricula atricollisSaltatricula atricollis289693580.81650Non-endemicNon-endemic
Coereba flaveola alleniInvalid1901910Endemic
Conothraupis mesoleucaConothraupis mesoleuca8190.89320Non-endemicNon-endemic
Loriotus cristatus nattereriInvalid10110Endemic
Ramphocelus carbo centralisNot revised79261050.75130Non-endemicNon-endemic
Sporophila melanopsInvalid11110Endemic
Sporophila nigrorufaSporophila nigrorufa710170.41340Non-endemicNon-endemic
Cypsnagra hirundinaceaC. hirundinacea133431760.761200Non-endemicNon-endemic
Cypsnagra h. hirundinaceaNot revised92111030.89170Non-endemicNon-endemic
Cypsnagra h. pallidigulaNot revised4132730.561200Non-endemicNon-endemic
Microspingus cinereusMicrospingus cinereus587650.89280Non-endemicNon-endemic
Sicalis citrina citrinaNot revised6517820.79440Non-endemicNon-endemic
Neothraupis fasciataNeothraupis fasciata155161710.911200Non-endemicNon-endemic
Schistochlamys ruficapillus sickiInvalid126180.67660Non-endemic
Paroaria baeri192210.95140Non-endemic
Paroaria b. baeriParoaria baeri1901910EndemicEndemic
Paroaria b. xinguensisParoaria xinguensis0220140Non-endemicNon-endemic
Stilpnia cyanicollis albotibialisStilpnia albotibialis10110EndemicEndemic
Stilpnia cayana margaritaeInvalid70710Endemic
Stilpnia cayana sincipitalisInvalid312330.94120Non-endemic

Polytypic species according to the traditional taxonomy.

aThe taxonomy of the Phaethornis nattereri complex is problematic, with some authors considering P. maranhaoensis as a subspecies of P. nattereri or as inseparable from P. nattereri (Hinkelmann 1988, Piacentini 2011).

bTaxon not recognized by Dickinson (2003).

cCampylopterus calcirupicola is a recently described species whose populations have been, until recently, identified as belonging to Campylopterus largipennis diamantinensis (Silva 1990).

dCinclodes espinhacensis is a recently described species whose populations have been, until recently, identified as belonging to Cinclodes pabsti (Freitas et al. 2008).

Table 2.

List of the bird species endemic to the Cerrado after reviewing their geographical range and taxonomy. We also indicate the sub-areas of endemism to which they are associated and present data on their main habitat and micro-habitat.

SpeciesArea of endemismHabitatMicro-habitat
Nothura minorGrassland
Augastes scutatusSouthern EspinhaçoCampo Rupestre
Campylopterus calcirupicolaBambuí KarstSeasonally dry forestLimestone outcrops
Campylopterus diamantinensisSouthern EspinhaçoCampo Rupestre
Columbina cyanopisSavannaWhite sand shrubland
Malacoptila minorSemideciduous forest
Celeus obrieniSemideciduous forestBamboo thickets
Pyrrhura pfrimeriBambuí KarstSeasonally dry forest
Geositta poecilopteraGrassland
Cinclodes espinhacensisSouthern EspinhaçoCampo Rupestre
Syndactyla dimidiateRiparian forest
Asthenes luizaeSouthern EspinhaçoCampo RupestreRock outcrops
Synallaxis simoniAraguaia FloodplainsRiparian forestRiver created habitats
Cercomacra ferdinandiRiparian forestRiver created habitats
Scytalopus novacapitalisRiparian forest
Arremon flavirostrisSemideciduous forest
Myiothlypis leucophrysRiparian forest
Paroaria baeriAraguaia FloodplainsRiparian forestRiver created habitats
Stilpnia albotibialisRiparian forest
SpeciesArea of endemismHabitatMicro-habitat
Nothura minorGrassland
Augastes scutatusSouthern EspinhaçoCampo Rupestre
Campylopterus calcirupicolaBambuí KarstSeasonally dry forestLimestone outcrops
Campylopterus diamantinensisSouthern EspinhaçoCampo Rupestre
Columbina cyanopisSavannaWhite sand shrubland
Malacoptila minorSemideciduous forest
Celeus obrieniSemideciduous forestBamboo thickets
Pyrrhura pfrimeriBambuí KarstSeasonally dry forest
Geositta poecilopteraGrassland
Cinclodes espinhacensisSouthern EspinhaçoCampo Rupestre
Syndactyla dimidiateRiparian forest
Asthenes luizaeSouthern EspinhaçoCampo RupestreRock outcrops
Synallaxis simoniAraguaia FloodplainsRiparian forestRiver created habitats
Cercomacra ferdinandiRiparian forestRiver created habitats
Scytalopus novacapitalisRiparian forest
Arremon flavirostrisSemideciduous forest
Myiothlypis leucophrysRiparian forest
Paroaria baeriAraguaia FloodplainsRiparian forestRiver created habitats
Stilpnia albotibialisRiparian forest
Table 2.

List of the bird species endemic to the Cerrado after reviewing their geographical range and taxonomy. We also indicate the sub-areas of endemism to which they are associated and present data on their main habitat and micro-habitat.

SpeciesArea of endemismHabitatMicro-habitat
Nothura minorGrassland
Augastes scutatusSouthern EspinhaçoCampo Rupestre
Campylopterus calcirupicolaBambuí KarstSeasonally dry forestLimestone outcrops
Campylopterus diamantinensisSouthern EspinhaçoCampo Rupestre
Columbina cyanopisSavannaWhite sand shrubland
Malacoptila minorSemideciduous forest
Celeus obrieniSemideciduous forestBamboo thickets
Pyrrhura pfrimeriBambuí KarstSeasonally dry forest
Geositta poecilopteraGrassland
Cinclodes espinhacensisSouthern EspinhaçoCampo Rupestre
Syndactyla dimidiateRiparian forest
Asthenes luizaeSouthern EspinhaçoCampo RupestreRock outcrops
Synallaxis simoniAraguaia FloodplainsRiparian forestRiver created habitats
Cercomacra ferdinandiRiparian forestRiver created habitats
Scytalopus novacapitalisRiparian forest
Arremon flavirostrisSemideciduous forest
Myiothlypis leucophrysRiparian forest
Paroaria baeriAraguaia FloodplainsRiparian forestRiver created habitats
Stilpnia albotibialisRiparian forest
SpeciesArea of endemismHabitatMicro-habitat
Nothura minorGrassland
Augastes scutatusSouthern EspinhaçoCampo Rupestre
Campylopterus calcirupicolaBambuí KarstSeasonally dry forestLimestone outcrops
Campylopterus diamantinensisSouthern EspinhaçoCampo Rupestre
Columbina cyanopisSavannaWhite sand shrubland
Malacoptila minorSemideciduous forest
Celeus obrieniSemideciduous forestBamboo thickets
Pyrrhura pfrimeriBambuí KarstSeasonally dry forest
Geositta poecilopteraGrassland
Cinclodes espinhacensisSouthern EspinhaçoCampo Rupestre
Syndactyla dimidiateRiparian forest
Asthenes luizaeSouthern EspinhaçoCampo RupestreRock outcrops
Synallaxis simoniAraguaia FloodplainsRiparian forestRiver created habitats
Cercomacra ferdinandiRiparian forestRiver created habitats
Scytalopus novacapitalisRiparian forest
Arremon flavirostrisSemideciduous forest
Myiothlypis leucophrysRiparian forest
Paroaria baeriAraguaia FloodplainsRiparian forestRiver created habitats
Stilpnia albotibialisRiparian forest

Using the revised alternative taxonomy identified more species endemic to the Cerrado than using the BSC at the species level because several taxa considered subspecies under the second concept are ranked as independent species under the first concept (for details and references, see Supporting Information, Appendix S2). In contrast, using BSC-subspecies as taxonomic units identified more endemic taxa to the Cerrado than using the revised alternative taxonomy because several currently accepted subspecies were not considered ESUs after revisions. Examples include extremes of individual variation [e.g. Syndactyla dimidiata baeri (Hellmayr, 1911)], arbitrary breaks of a cline [e.g. Nothura maculosa major (Spix, 1825) and Sakesphorus luctuosus araguayae (Hellmayr, 1908)], or hybrid specimens [e.g. Loriotus cristatus nattereri (Pelzeln, 1870)] (Table 1; Supporting Information, Appendices S2 and S4).

Areas of endemism

The number of areas of endemism within a region depends on the type of taxonomic units used in the analysis (Fig. 2). Using BSC-species (our database contained 461 occurrences of 11 species), we detected only one area of endemism, the Southern Espinhaço (with the following synendemic species: Augastes scutatus (Temminck, 1824) and Asthenes luizae Vielliard, 1990). We have also identified other areas that harbour only one endemic species. However, these areas cannot be considered areas of endemism because they do not show ‘distributional congruence among two or more taxa’, as required by the definition of an area of endemism adopted here. These areas were the Paranã Valley (Pyrrhura pfrimeri Miranda-Ribeiro, 1920), the Central Brazilian Plateau (Scytalopus novacapitalis Sick, 1958), and the Upper Araguaia River [Sporophila melanops (Pelzeln, 1870)].

Areas of endemism for birds detected in the Cerrado by adopting a geographical interpolation of endemism approach. Note that some of these areas are delimited by only one species and, therefore, cannot be considered an area of endemism as defined in this study. The areas detected were as follows: 1, Southern Espinhaço; 2, Paranã Valley; 2ʹ, Bambuí Karst; 3, Central Brazilian Plateau; 4, Upper Araguaia; 5, Veadeiros Plateau; 6, Mato Grosso; 7, Araguaia Floodplains; and 8, Cáceres.
Figure 2.

Areas of endemism for birds detected in the Cerrado by adopting a geographical interpolation of endemism approach. Note that some of these areas are delimited by only one species and, therefore, cannot be considered an area of endemism as defined in this study. The areas detected were as follows: 1, Southern Espinhaço; 2, Paranã Valley; 2ʹ, Bambuí Karst; 3, Central Brazilian Plateau; 4, Upper Araguaia; 5, Veadeiros Plateau; 6, Mato Grosso; 7, Araguaia Floodplains; and 8, Cáceres.

Using BSC-subspecies (1078 occurrences of 31 taxa), we identified four areas of endemism (Fig. 2). These areas were the Southern Espinhaço (Augastes s. scutatus, A. s. soaresi Ruschi, 1963, A. s. ilseae Grantsau, 1967, and Asthenes luizae), the Central Brazilian Plateau (Scytalopus novacapitalis and Thamnophilus caerulescens ochraceiventer Snethlage, 1928), Mato Grosso [Syndactyla d. dimidiata (Pelzeln, 1859) and Stilpnia cayana margaritae (Alen, 1891)], and the Araguaia Floodplains (Furnarius leucopus araguaiae Pinto & Camargo, 1952, Synallaxis albilora simoni Hellmayr, 1907, Sakesphorus luctuosus araguayae, and Paroaria b. baeri Hellmayr, 1907). Other areas delimited by the range of only one endemic taxon were the Paranã Valley (Pyrrhura pfrimeri), the Upper Araguaia (Sporophila melanops), the Veadeiros Plateau [Stilpnia cyanicollis albotibialis (Taylor, 1950)], and Cáceres (Loriotus cristatus nattereri).

Using the revised alternative taxonomy (822 occurrences of 19 species), we detected three areas of endemism: the Southern Espinhaço (Augastes scutatus, Campylopterus diamantinensis Ruschi, 1963, Cinclodes espinhacensis Freitas, Chaves, Costa, Santos & Rodrigues, 2012, and Asthenes luizae), the Araguaia Floodplains (Synallaxis simoni and Paroaria baeri), and the Bambuí Karst (Pyrrhura pfrimeri and Campylopterus calcirupicolaLopes, Vasconcelos & Gonzaga, 2017), with this last area encompassing the entire Paranã Valley within it. Areas with one endemic species were the Central Brazilian Plateau (Scytalopus novacapitalis) and the Veadeiros Plateau (Stilpnia albotibialis).

Discussion

In this paper, we have examined how three different taxonomic approaches influenced the number of endemic taxa of the Cerrado and the number and location of the areas of endemism delimited by them. We found that adopting distinct taxonomic approaches impacted the number of endemic taxa identified and the number of areas of endemism detected. These results have implications for biogeographical studies in tropical regions, where most biological groups still need to be investigated better from a taxonomic perspective.

Levels of endemicity

Our analyses provided new insights into the composition and diversity of taxa endemic to the Cerrado. Firstly, we found that several species formerly considered endemic to the Cerrado (Silva 1997, Silva and Bates 2002) occur much beyond the limits of the Cerrado. Examples are Herpsilochmus longirostris Pelzeln, 1868, discovered in the Beni Savannas (Terrill et al. 2014, Martínez et al. 2019), and Charitospiza eucosma Oberholser, 1905, reported in the Coastal Tabuleiros of northeastern Brazil (Pichorim et al. 2014). Secondly, a better understanding of the range and habitat association of poorly known taxa, such as Malacoptila minor Sassi, 1911 (Melo et al. 2021) and Celeus obrieni Short, 1973 (Prado 2006, Dornas et al. 2014), allowed us to recognize them as endemic to the region. These results represent an improvement in comparison to previous studies on avian endemism in the Cerrado (Silva 1997, Silva and Bates 2002). However, this improvement does not mean that the Wallacean shortfall (the lack of knowledge about the geographical distribution of species) (Lomolino 2004, Hortal et al. 2015) has been closed in the region. Additional fieldwork in poorly explored regions across the Cerrado (Silva 1995a, Silva and Santos 2005) and adjacent regions might challenge some of our results.

It is important to note that studies on the geographical distribution of Cerrado birds must also consider the impacts of global changes (especially those on climate and land use) on the range of its endemic species. Global changes are usually projected to have a negative influence on the ranges of species endemic to the Cerrado (Marini et al. 2009a, b, Borges et al. 2019), but it is also likely that some endemic species can increase their ranges if human-made ecosystems replace habitats that once constrained their expansion (e.g. forests). A well-documented case of dramatic expansion in range during the last decades is that of Cyanocorax cristatellus (Temminck, 1823), a species that, despite being closely tied to the Cerrado, recently colonized the coast of southeastern Brazil after replacement of the Atlantic Forest by degraded pastures and woodlands (Lopes 2008). A similar range expansion was also suggested for Microspingus cinereus Bonaparte, 1850 (Ribon 2002). Range expansions are probably occurring for other birds closely tied to the Cerrado, such as Saltatricula atricollis (Vieillot, 1817) and Clibanornis rectirostris (Wied, 1831) (L.E.L., pers. obs.). Long-term studies are required to track range shifts in birds endemic to the Cerrado.

The taxonomic revisions we conducted also impacted the number of species endemic to the Cerrado. Firstly, it reduced the number of purported endemic taxa by revealing that several were taxonomic artefacts. For example, Schistochlamys ruficapillus sicki Pinto & Camargo, 1952 (Lopes and Gonzaga 2014), Loriotus cristatus nattereri (Lopes and Piacentini 2017), and Sporophila melanops (Areta et al. 2016) are an arbitrary subdivision of a cline, an interspecific hybrid, and a melanistic individual of another well-known species of seedeater, respectively (for taxonomic details and additional references, see Supporting Information, Appendix S2). Secondly, it increased the number of endemic taxa through the description of genuinely new taxa, such as Campylopterus calcirupicola (Lopes et al. 2017) and Cinclodes espinhacensis (Freitas et al. 2012), or the splitting of taxa that were until recently considered subspecies, such as Campylopterus diamantinensis (Lopes et al. 2017). Therefore, filling the Linnean shortfall (i.e. the discrepancy between formally described species and the real number of living species) (Lomolino 2004, Hortal et al. 2015) can influence studies on regional endemicity patterns. Filling the Linnean shortfall will involve the description of new taxa and the revision of thousands of Neotropical bird subspecies that have yet to receive modern scrutiny (Lees et al. 2020). Therefore, it is likely that future taxonomic studies will impact the patterns of bird endemism recognized here for the Cerrado. For example, an obvious candidate to be an endemic species to the Cerrado is an undescribed Certhiaxis reported along the Araguaia Floodplains (Kirwan et al. 2015, Areta et al. 2017, eBird 2023).

Adopting a revised alternative taxonomy resulted in a 73% increase in endemic species compared with the traditional taxonomy at the species level (BSC-species). This finding supports our hypothesis that the widespread use of the traditional taxonomy underestimates the real level of bird endemism in the Cerrado. In contrast, adopting the BSC-subspecies resulted in the recognition of more than a dozen entities that are not ESUs as Cerrado endemics, thus overestimating real levels of bird endemism in the Cerrado by more than 2-fold. This finding supports the hypothesis that the estimated number of ESUs in birds is smaller than the currently recognized number of subspecies (Barrowclough et al. 2016).

The total number of endemic species identified here using a revised alternative taxonomy pointed to an endemicity level of only 2.2% for birds in the Cerrado, which is even lower than the previous estimate of 3.5% (Silva 1997, Silva and Bates 2002). When compared with other major groups of terrestrial vertebrates and plants (Myers et al. 2000, Nogueira et al. 2011, Valdujo et al. 2012, Gutiérrez and Marinho-Filho 2017), birds probably exhibit the lowest level of endemism in the Cerrado. A low level of endemicity for birds seems to be characteristic of grassland and savanna biomes worldwide (Fa and Funk 2007), and is not an exclusive feature of the Cerrado or other tropical savannas (Haffer 1974, Fjeldså 2003, Franchin et al. 2009).

Areas of endemism

Using species identified by a revised alternative taxonomy to identify areas of endemism led to more of these areas than using BSC-species alone. However, using BSC-subspecies resulted in the identification of even more areas of endemism, some of them based on taxonomic artefacts. These results supported our initial hypotheses that the widespread use of the BSC in ornithology hinders the recognition of areas of endemism when species are used as terminal taxa, but that the use of bird subspecies as taxonomic units can lead to the recognition of spurious areas of endemism based on biologically meaningless entities. In line with our results, a study of bird endemism undertaken in Mexico, using a revised alternative taxonomy, almost doubled the number of endemic species recognized and the number of areas of endemism detected (Peterson and Navarro-Singüenza 1999). Likewise, a major revision of the alpha taxonomy of Liolaemus lizards in South America resulted in a 6-fold increase in the number of known species, drastically impacting the previously recognized pattern of endemism in the southernmost terrestrial ecoregions of the world (Nori et al. 2022). Therefore, challenging the taxonomic tradition in ornithology (i.e. the wide acceptance of poorly conceived subspecies) might directly impact the number of endemic species recognized in a biogeographical region and the number and location of the areas of endemism delimited by them.

An emblematic case of how inadequate taxonomic knowledge might result in recognition of spurious areas of endemism is illustrated by the purported ‘Mato Grosso’ area of endemism we detected in the central part of South America when using the BSC-subspecies. This region was terra incognita until the 1880s, when it was subjected to one of the most extraordinary bird collections ever performed in South America. A 5-year expedition led by H. Smith amassed >6000 bird specimens in the region (Allen 1891), which led to the description of almost 20 new bird taxa (Lopes et al. 2009). At that time, substantial sampling gaps, sometimes of nearly 1000 km, existed in the central part of South America, precluding an adequate appreciation of the morphological variation observed in many bird species widespread in the Neotropical region. Therefore, it was unsurprising that several birds collected in the region were described as new during this time based on arbitrary breaks in clinal variation. This sampling artefact produced non-random distributional congruence among a set of ‘restricted range’ meaningless taxonomic units, leading to the detection of a spurious area of endemism.

The three areas of endemism detected here using a revised alternative taxonomy are the smallest biogeographical units one can identify for birds within the Cerrado. However, we found some signs of nestedness that, although not verified for birds, have been described for other biological groups. The Southern Espinhaço, for example, harbours a microendemic species, Cinclodes espinhacensis, which has an area of occupancy of merely 100 km2 (Freitas et al. 2019) along the Diamantina Plateau. The Southern Espinhaço is a well-known area of endemism for distinct biological groups (Colli‐Silva et al. 2019), presenting several smaller areas of endemism nested within it, including the Diamantina Plateau, as demonstrated for amphibians (Leite 2012) and for some groups of plants, including Apocynaceae (Bitencourt and Rapini 2013), Lauraceae (Assunção-Silva and Assis 2022), Melastomataceae (Pacífico et al. 2020), and Mimosoideae (Simon and Proença 2000).

The Araguaia Floodplains harbours a third bird species formerly considered endemic to it, Cercomacra ferdinandi Snethlage, 1928 (Silva 1997), which is now known to extend its range to the Tocantins River valley (Olmos et al. 2006). The Tocantins-Araguaia Basin is a well-known area of endemism for the herpetofauna (Azevedo et al. 2016); therefore, the Araguaia Floodplains seem to be nested within it.

The Bambuí Karst harbours two bird species restricted to dry forests growing over rocky limestone outcrops or limestone-derived soils. The Bambuí Karst is a group of horizontally bedded Upper Proterozoic limestone rocks widely but patchily distributed throughout the Brazilian states of Tocantins, Goiás, Minas Gerais, and Bahia (Auler and Farrant 1996). Pyrrhura pfrimeri has a narrow range, being restricted to the Paranã Valley, a well-known area of endemism for herpetofauna (Werneck and Colli 2006, Azevedo et al. 2016), with Campylopterus calcirupicola also reaching the dry forests along the São Francisco river basin. (Lopes et al. 2017). Another bird species distributed throughout the Bambuí Karst is Knipolegus franciscanus Snethlage, 1928 (Silva and Oren 1992), but its range extends to the Caatinga region, slightly beyond the threshold established here to be considered endemic to the Cerrado. Therefore, although the Paranã Valley was not recognized here as an area of endemism for birds, distributional data also suggest signs of nestedness, supported by biogeographical data of other biological groups.

Methodological limitations of the geographical interpolation of endemism analysis

We used the geographical interpolation of endemism analysis to identify areas of endemism. Although the method was reliable for detecting different areas of endemism when using different types of taxonomic units, we faced some issues with the shape of the areas of endemism detected. Because this method is based on a circular area of influence around the centroid of the range of each species, it is limited when analysing species with elongated ranges (Oliveira et al. 2015). Two of the main areas of endemism we detected, the Southern Espinhaço and the Araguaia Floodplains, are elongated because they follow a mountain range and a river valley, respectively. Therefore, although this method adequately detected the existence and the location of these areas of endemism, it failed to depict their shapes accurately. Another methodological limitation we observed was that smaller areas purportedly nested within larger areas of endemism, such as the Upper Araguaia, can be mapped as distinct from the larger area within which they are nested (Fig. 2). This is because the centroid of the range of their endemic taxa, in addition to the value of the radius of influence around the centroid, varied considerably between those species that overlap in range along an elongated area. For example, Sporophila melanops was known from a single locality at the southern extreme of the ranges of Synallaxis simoni and Paroaria baeri.

Biogeographical and conservation implications

The three areas of endemism for birds detected here are not covered by typical savanna vegetation (‘cerrado típico’) (Ribeiro and Walter 2008). Instead, they represent patches of other vegetation types embedded in the largest tropical savanna region in the world. The Southern Espinhaço is mostly covered by high-elevation (up to ~2000 m) Campo Rupestre vegetation (Giulietti et al. 1997, Silveira et al. 2016), the Bambuí Karst by seasonally dry tropical forests (Bianchi and Haig 2012), and the Araguaia Floodplains by lowland (~200 m) seasonal wetlands dominated by open grasslands and forests (Ratter 1987, Valente et al. 2013). These three areas of endemism are the home of 7 of the 19 bird species endemic to the Cerrado.

Even more interesting, none of the 19 bird species endemic to the Cerrado inhabits typical savanna vegetation. These species are restricted to different types of forests, open grasslands, and Campo Rupestre (Table 2). Furthermore, at least seven of the endemic birds of the Cerrado are restricted to specialized micro-habitats (Table 2), such as bamboo thickets (Cockle and Areta 2013, Leite et al. 2013), river-created habitats (Remsen and Parker 1983, Lopes and Gonzaga 2013), limestone outcrops (Lopes et al. 2020), and white-sand shrublands. This last micro-habitat, as tentatively described here for the first time, is characterized by its highly oligotrophic white-sand soils that support open shrubland with few trees (Wagner Nogueira, pers. com.). This habitat is the home of the Critically Endangered Columbina cyanopis (Pelzeln, 1870), one of the rarest birds in the world (BirdLife International 2023).

Conclusions

In this study, we demonstrated that the adoption of distinct taxonomic approaches influenced the number of endemic ESUs and the number of areas of endemism delimited by them in the Cerrado, the largest and most biodiverse tropical savanna. This result points out that the taxonomic tradition of using poorly conceived subspecies in ornithology (Remsen 2010, Burbrink et al. 2022) can generate spurious biogeographical patterns. Assessing the impact of taxonomic approaches on patterns of diversity and endemicity is relevant because it might have profound impacts, not only on biogeographical studies but also on conservation biology, because areas with endemic species represent unique places that have high conservation priority (Stattersfield et al. 1998, BirdLife International 2023).

Acknowledgements

L.E.L. thanks the Department of Geography and Sustainable Development at the University of Miami, and L.G. Ferreira & A.L. Pascoini for support when working on this article. We are grateful to all the museum personnel who kindly allowed us to study material under their care, and to those institutions who made available online their databases through VertNet and SpeciesLink. Wagner Nogueira shared unpublished observations on the habitat of Columbina cyanopis. An anonymous reviewer provided important suggestions that improved an earlier version of this manuscript.

Conflict of interest

None declared.

Funding

L.E.L. received a doctoral fellowship and grants (APQ 04082-10 and 00832-15) from the Fundação de Amparo à Pesquisa do Estado de Minas Gerais. L.E.L. (316960/2021-7) and M.R. (304406/2021-0) received research fellowshipsfrom the Conselho Nacional de Desenvolvimento Científico e Tecnológico. L.E.L. also received a collection study grant from the American Museum of Natural History. J.M.C.S. is supported by the University of Miami and Swift Action Fund.

DATA AVAILABILITY

The data underlying this article will be shared on reasonable request to the corresponding author.

References

Ackerly
DD
,
Thomas
WW
,
Cid Ferreira
CA
et al. .
The forest-cerrado transition zone in southern Amazonia: results of the 1985 Projeto Flora Amazônica expedition to Mato Grosso
.
Brittonia
1989
;
41
:
113
58
.

Aleixo
A.
Conceitos de espécie e o eterno conflito entre continuidade e operacionalidade: uma proposta de normatização de critérios para o reconhecimento de espécies pelo Comitê Brasileiro de Registros Ornitológicos
.
Revista Brasileira de Ornitologia
2007
;
15
:
297
310
.

Aleixo
A.
On species concepts, species delimitation criteria, taxonomy committees, and biases: a response to Lima (2022a)
.
Ornithology Research
2023
;
31
:
62
70
. https://doi.org/10.1007/s43388-023-00117-5

Allen
JA.
On a collection of birds from Chapada, Matto Grosso, Brazil, made by Mr. Herbert H. Smith. Part I – Oscines
.
Bulletin of the American Museum of Natural History
1891
;
3
:
337
80
.

Areta
JI
,
Dornas
T
,
Kirwan
GM
et al. .
Mixing the waters: a linear hybrid zone between two riverine Neotropical cardinals (Paroaria baeri and P. gularis)
.
Emu - Austral Ornithology
2017
;
117
:
40
50
. https://doi.org/10.1080/01584197.2016.1266447

Areta
JI
,
Piacentini
VQ
,
Haring
E
et al. .
Tiny bird, huge mystery – the possibly extinct hooded seedeater (Sporophila melanops) is a capuchino with a melanistic cap
.
PLoS One
2016
;
11
:
e0154231
.

Assunção-Silva
CC
,
Assis
LCS.
Areas of endemism of Lauraceae: new insights on the biogeographic regionalization of the Espinhaço Range, Brazil
.
Cladistics
2022
;
38
:
246
63
. https://doi.org/10.1111/cla.12481

Auler
A
,
Farrant
AR.
A brief introduction to karst and caves in Brazil
.
Proceedings of the University of Bristol Spelaeological Society
1996
;
20
:
187
200
.

Azevedo
JAR
,
Valdujo
PH
,
Nogueira
CC.
Biogeography of anurans and squamates in the Cerrado hotspot: coincident endemism patterns in the richest and most impacted savanna on the globe
.
Journal of Biogeography
2016
;
43
:
2454
64
.

Barrowclough
GF
,
Cracraft
J
,
Klicka
J
et al. .
How many kinds of birds are there and why does it matter
?
PLoS One
2016
;
11
:
e0166307
. https://doi.org/10.1371/journal.pone.0166307

Bianchi
CA
,
Haig
SM.
Deforestation trends of Tropical Dry Forests in central Brazil
.
Biotropica
2012
;
45
:
395
400
. https://doi.org/10.1111/btp.12010

BirdLife International
.
Data Zone
.
Cambridge
:
BirdLife International
.
2023
. http://datazone.birdlife.org/home (
January 2023
, date last accessed).

Bitencourt
C
,
Rapini
A.
Centres of endemism in the Espinhaço range: identifying cradles and museums of Asclepiadoideae (Apocynaceae)
.
Systematics and Biodiversity
2013
;
11
:
525
36
. https://doi.org/10.1080/14772000.2013.865681

Borges
FJA
,
Ribeiro
BR
,
Lopes
LE
et al. .
Bird vulnerability to climate and land use changes in the Brazilian Cerrado
.
Biological Conservation
2019
;
236
:
347
55
. https://doi.org/10.1016/j.biocon.2019.05.055

Borghetti
F
,
Barbosa
E
,
Ribeiro
L
, et al. .
South American savannas
. In:
Scogings
PF
,
Sankaran
M
(eds.),
Savanna Woody Plants and Large Herbivores
.
Chichester
:
John Wiley & Sons
,
2019
,
77
122
.

Burbrink
FT
,
Crother
BI
,
Murray
CM
et al. .
Empirical and philosophical problems with the subspecies rank
.
Ecology and Evolution
2022
;
12
:
e9069
. https://doi.org/10.1002/ece3.9069

Burns
KJ
,
Unitt
P
,
Mason
NA.
A genus-level classification of the family Thraupidae (Class Aves: Order Passeriformes)
.
Zootaxa
2016
;
4088
:
329
54
. https://doi.org/10.11646/zootaxa.4088.3.2

Clements
JF.
The Clements Checklist of the Birds of the World
.
New York
:
Cornell University Press
,
2007
.

Clements
JF
,
Schulenberg
TS
,
Iliff
MJ
, et al. .
The eBird/Clements Checklist of Birds of the World, v.
2022
. www.birds.cornell.edu/clementschecklist/download (
April 2023
, date last accessed).

Clements
R
,
Ng
PKL
,
Lu
XX
et al. .
Using biogeographical patterns of endemic land snails to improve conservation planning for limestone karsts
.
Biological Conservation
2008
;
141
:
2751
64
.

Cockle
KL
,
Areta
JI.
Specialization on bamboo by Neotropical birds
.
The Condor
2013
;
115
:
217
20
. https://doi.org/10.1525/cond.2013.120067

Colli‐Silva
M
,
Vasconcelos
TNC
,
Pirani
JR.
Outstanding plant endemism levels strongly support the recognition of campo rupestre provinces in mountaintops of eastern South America
.
Journal of Biogeography
2019
;
46
:
1723
33
. https://doi.org/10.1111/jbi.13585

Crother
BI
,
Murray
CM.
Ontology of areas of endemism
.
Journal of Biogeography
2011
;
38
:
1009
15
. https://doi.org/10.1111/j.1365-2699.2011.02483.x

Daru
BH
,
Rodriguez
J.
Mass production of unvouchered records fails to represent global biodiversity patterns
.
Nature Ecology & Evolution
2023
;
7
:
816
31
. https://doi.org/10.1038/s41559-023-02047-3

David
N
,
Gosselin
M.
Gender agreement of avian species-group names under Article 31.2.2 of the ICZN Code
.
Bulletin of the British Ornithologists’ Club
2011
;
131
:
103
15
.

del Hoyo
J
,
Elliott
A
,
Sargatal
J
, et al. .
Handbook of the Birds of the World
, Vols 1–16.
Barcelona
:
Lynx Edicions
,
1992–2012
.

de Queiroz
K.
The general lineage concept of species, species criteria, and the process of speciation: a conceptual unification and terminological recommendations
. In:
Howard
DJ
,
Berlocher
SH
(eds.),
Endless Forms: Species and Speciation
.
Oxford
:
Oxford University Press
,
1998
,
57
75
.

de Queiroz
K.
The general lineage concept of species and the defining properties of the species category
. In:
Wilson
RA
(ed.),
Species: New Interdisciplinary Essays
.
Cambridge
:
MIT Press
,
1999
,
49
89
.

de Queiroz
K.
Species concepts and species delimitation
.
Systematic Biology
2007
;
56
:
879
86
. https://doi.org/10.1080/10635150701701083

de Queiroz
K.
An updated concept of subspecies resolves a dispute about the taxonomy of incompletely separated lineages
.
Herpetological Review
2020
;
51
:
459
61
.

Dickinson
EC.
The Howard and Moore Complete Checklist of the Birds of the World
, 3rd edn.
Princeton
:
Princeton University Press
,
2003
.

Dinerstein
E
,
Olson
D
,
Joshi
A
et al. .
An ecoregion-based approach to protecting half the terrestrial realm
.
BioScience
2017
;
67
:
534
45
. https://doi.org/10.1093/biosci/bix014

Dornas
T
,
Pinheiro
RT
,
Corrêa
AG
et al. .
Novos registros e implicações sobre a ocorrência de Celeus obrieni, pica-pau-do-parnaíba no cerrado norte e amazônia maranhense
.
Ornithologia
2014
;
7
:
23
8
.

eBird
.
Araguaia River Spinetail Certhiaxis sp. (undescribed form)
.
Ithaca
:
eBird, Cornell Lab of Ornithology
,
2023
. https://ebird.org/species/arrspi1 (
January 2023
, date last accessed).

Eiten
G.
The Cerrado vegetation of Brazil
.
The Botanical Review
1972
;
38
:
201
341
. https://doi.org/10.1007/bf02859158

ESRI
.
ArcGIS Desktop 10.6
[Computer Program].
Redlands
:
Environmental Systems Research Institute, Inc
.,
2017
.

Fa
JE
,
Funk
SM.
Global endemicity centres for terrestrial vertebrates: an ecoregions approach
.
Endangered Species Research
2007
;
3
:
31
42
. https://doi.org/10.3354/esr003031

Fitzpatrick
JW.
Subspecies are for convenience
.
Ornithological Monographs
2010
;
67
:
54
61
. https://doi.org/10.1525/om.2010.67.1.54

Fjeldså
J.
Patterns of endemism in African birds: how much does taxonomy matter
?
Ostrich
2003
;
74
:
30
8
. https://doi.org/10.2989/00306520309485367

Franchin
AG
,
Juliano
RF
,
Kanegae
MF
, et al. .
Birds in the tropical savannas
. In:
del-Claro
K
,
Oliveira
PS
,
Rico-Gray
V
(eds.),
Tropical Biology and Conservation Management
, Vol. X,
Savanna Ecosystems
.
Oxford
:
UNESCO EOLSS
,
2009
,
160
91
.

Françoso
RD
,
Brandão
R
,
Nogueira
CC
et al. .
Habitat loss and the effectiveness of protected areas in the Cerrado Biodiversity Hotspot
.
Natureza & Conservação
2015
;
13
:
35
40
. https://doi.org/10.1016/j.ncon.2015.04.001

Freitas
GHS
,
Chaves
AV
,
Costa
LM
et al. .
A new species of Cinclodes from the Espinhaço Range, southeastern Brazil: insights into the biogeographical history of the South American highlands
.
Ibis
2012
;
154
:
738
55
. https://doi.org/10.1111/j.1474-919x.2012.01268.x

Freitas
GHS
,
Costa
LM
,
Ferreira
GD
et al. .
The range of long-tailed cinclodes Cinclodes pabsti extends to Minas Gerais (Brazil)
.
Bulletin of the British Ornithologists’ Club
2008
;
128
:
215
6
.

Freitas
GHS
,
Costa
LM
,
Silva
PHVBP
et al. .
Spatial ecology and conservation of the microendemic ovenbird Cipo Cinclodes (Cinclodes espinhacensis) from the Brazilian highlands
.
Journal of Field Ornithology
2019
;
90
:
128
42
. https://doi.org/10.1111/jofo.12296

Gill
F
,
Donsker
D
,
Rasmussen
PE.
International Ornithological Committee World Bird List, version 13.1
.
IOC
.
2023
. http://www.worldbirdnames.org/ (
January 2023
, date last accessed).

Giulietti
AM
,
Pirani
JR
,
Harley
RM.
Espinhaço range region: eastern Brazil
. In:
Davis
SD
,
Heywood
VH
,
Herrera-MacBryde
O
et al. . (eds.),
Centres of Plant Diversity: a Guide and Strategies for their Conservation
. Vol. 3,
The Americas
.
Oxford
:
Information Press
,
1997
,
397
404
.

González-Orozco
CE
,
Mishler
BD
,
Miller
JT
et al. .
Assessing biodiversity and endemism using phylogenetic methods across multiple taxonomic groups
.
Ecology and Evolution
2015
;
5
:
5177
92
. https://doi.org/10.1002/ece3.1747

Gottsberger
G
,
Silberbauer-Gottsberger
I.
Life in the Cerrado, a South American Tropical Seasonal Ecosystem
, Vol. 1,
Origin, Structure, Dynamics and Plant Use
.
Ulm
:
Reta
,
2006
.

Gutiérrez
EE
,
Marinho-Filho
J.
The mammalian faunas endemic to the Cerrado and the Caatinga
.
Zookeys
2017
;
644
:
105
57
. https://doi.org/10.3897/zookeys.644.10827

Haffer
J.
Avian speciation in tropical South America, with a systematic survey of the toucans (Ramphastidae) and jacamars (Galbulidae)
.
Publications of the Nuttall Ornithological Club
1974
;
14
:
1
390
.

Haffer
J.
The history of species concepts and species limits in ornithology
.
Bulletin of the British Ornithologists’ Club
1992
;
112
:
107
58
.

Haig
SM
,
Winker
K.
Avian subspecies: summary and prospectus
.
Ornithological Monographs
2010
;
67
:
172
5
. https://doi.org/10.1525/om.2010.67.1.172

Hausdorf
B.
Units in biogeography
.
Systematic Biology
2002
;
51
:
648
52
. https://doi.org/10.1080/10635150290102320

Hayes
FE.
Status, Distribution and Biogeography of the Birds of Paraguay
.
New York
:
American Birding Association
,
1995
.

Hellmayr
CE
,
Cory
CB
,
Conover
B.
Catalogue of Birds of the Americas and the Adjacent Islands in Field Museum of Natural History, Parts I–XI
.
Field Museum of Natural History Publications, Zoological Series
1918–1949
;
13
.

Hinkelmann
C.
On the identity of Phaethornis maranhaoensis Grantsau, 1968 (Trochilidae)
.
Bulletin of the British Ornithologists’ Club
1988
;
108
:
14
8
.

Hortal
J
,
Bello
F
,
Diniz-Filho
JAF
et al. .
Seven shortfalls that beset largescale knowledge of biodiversity
.
Annual Review of Ecology, Evolution, and Systematics
2015
;
46
:
523
49
.

Huang
J
,
Huan
J
,
Lu
X
et al. .
Diversity distribution patterns of Chinese endemic seed plant species and their implications for conservation planning
.
Scientific Reports
2016
;
6
:
33913
.

IBGE
.
Série Relatórios Metodológicos 45. Biomas e Sistema Costeiro-Marinho do Brasil: Compatível com a Escala 1:250.000
.
Brasília
:
IBGE
,
2019
.

Johnson
NK
,
Remsen
JV
Jr
,
Cicero
C.
Resolution of the debate over species concepts in ornithology: a new comprehensive biologic species concept
. In:
Adams
NJ
,
Slotow
RH
, (eds.),
Proceedings of the 22th International Ornithological Congress
.
Durban
:
BirdLife South Africa
,
1999
,
1470
82
.

Kawecki
TJ.
Adaptation to marginal habitats
.
Annual Review of Ecology, Evolution, and Systematics
2008
;
39
:
321
42
. https://doi.org/10.1146/annurev.ecolsys.38.091206.095622

Kessler
M
,
Herzog
SK
,
Fjeldså
J
et al. .
Species richness and endemism of plant and bird communities along two gradients of elevation, humidity and land use in the Bolivian Andes
.
Diversity and Distributions
2001
;
7
:
61
77
. https://doi.org/10.1046/j.1472-4642.2001.00097.x

Kirwan
GM
,
Whittaker
A
,
Zimmer
KJ.
Interesting bird records from the Araguaia River Valley, central Brazil, with comments on conservation, distribution and taxonomy
.
Bulletin of the British Ornithologists’ Club
2015
;
135
:
21
60
.

Klink
CA
,
Machado
RB.
Conservation of the Brazilian Cerrado
.
Conservation Biology
2005
;
19
:
707
13
. https://doi.org/10.1111/j.1523-1739.2005.00702.x

Lees
AC
,
Rosenberg
KV
,
Ruiz-Gutierrez
V
et al. .
A roadmap to identifying and filling shortfalls in Neotropical ornithology
.
Auk
2020
;
137
:
1
17
.

Leite
FSF.
Taxonomia, biogeografia e conservação dos anfíbios da Serra do Espinhaço
.
Ph.D. Thesis. Department of Genética, Ecologia e Evolução
,
Universidade Federal de Minas Gerais
2012
.

Leite
GA
,
Pinheiro
RT
,
Marcellino
DG
et al. .
Foraging behavior of Kaempfer’s woodpecker (Celeus obrieni), a bamboo specialist
.
Condor
2013
;
115
:
221
9
.

Lima
RAF
,
Souza
VC
,
Siqueira
MF
et al. .
Defining endemism levels for biodiversity conservation: tree species in the Atlantic Forest hotspot
.
Biological Conservation
2020
;
252
:
108825
.

Lomolino
MV.
Conservation biogeography
. In:
Lomolino
MV
,
Heaney
LR
(eds.),
Frontiers of Biogeography: New Directions in the Geography of Nature
.
Sunderland
:
Sinauer Associates
,
2004
,
293
6
.

Lopes
LE.
The range of the curl-crested jay: lessons for evaluating bird endemism in the South American Cerrado
.
Diversity and Distributions
2008
;
14
:
561
8
.

Lopes
LE
,
Gonzaga
LP.
Taxonomy, natural history and conservation of Paroaria baeri (Aves: Thraupidae)
.
Tropical Zoology
2013
;
26
:
87
103
. https://doi.org/10.1080/03946975.2013.803820

Lopes
LE
,
Gonzaga
LP.
Morphological variation in the cinnamon tanager Schistochlamys ruficapillus (Aves: Thraupidae)
.
Zootaxa
2014
;
3873
:
477
94
. https://doi.org/10.11646/zootaxa.3873.5.2

Lopes
LE
,
Gonzaga
LP.
Melanopareia bitorquata (d’Orbigny & Lafresnaye, 1837) is a distinct species: an appraisal of morphological variation in the collared crescentchest Melanopareia torquata (zu Wied-Neuwied, 1831) (Aves: Melanopareiidae)
.
Zootaxa
2016a
;
4193
:
138
50
.

Lopes
LE
,
Gonzaga
LP.
Morphological data support the recognition of four species in the genus Sirystes Cabanis & Heine, 1859 (Aves: Tyrannidae)
.
Zootaxa
2016b
;
4127
:
401
31
.

Lopes
LE
,
Nogueira
W
,
Miranda
W.
The dry-forest sabrewing Campylopterus calcirupicola (Aves: Trochilidae) nests in limestone caves
.
Journal of Natural History
2020
;
54
:
1593
602
. https://doi.org/10.1080/00222933.2020.1819454

Lopes
LE
,
Piacentini
VQ.
Evidence of hybrid origin for Tachyphonus nattereri Pelzeln, 1870 (Aves: Thraupidae)
.
Zootaxa
2017
;
4277
:
386
98
. https://doi.org/10.11646/zootaxa.4277.3.4

Lopes
LE
,
Pinho
JB
,
Bernardon
B
et al. .
Aves da Chapada dos Guimarães, Mato Grosso, Brasil: uma síntese histórica do conhecimento
.
Papéis Avulsos de Zoologia
2009
;
49
:
9
47
.

Lopes
LE
,
Vasconcelos
MF
,
Gonzaga
LAP.
A cryptic new species of hummingbird of the Campylopterus largipennis complex (Aves: Trochilidae)
.
Zootaxa
2017
;
4268
:
1
33
.

Marini
MA
,
Barbet-Massin
M
,
Lopes
LE
et al. .
Major current and future gaps of Brazilian reserves to protect Neotropical savanna birds
.
Biological Conservation
2009a
;
142
:
3039
50
. https://doi.org/10.1016/j.biocon.2009.08.002

Marini
MA
,
Barbet-Massin
M
,
Lopes
LE
et al. .
Predicted climate-driven bird distribution changes and forecasted conservation conflicts in a neotropical savanna
.
Conservation Biology
2009b
;
23
:
1558
67
. https://doi.org/10.1111/j.1523-1739.2009.01258.x

Marques
EQ
,
Marimon‑Junior
BH
,
Marimon
BS
et al. .
Redefining the Cerrado–Amazonia transition: implications for conservation
.
Biodiversity and Conservation
2020
;
29
:
1501
17
.

Martínez
O
,
Salvatierra
R
,
Chao
J
et al. .
First record and distribution range extension of large-billed antwren, Herpsilochmus longirostris (Birds: Thamnophilidae) for the Pando department and new record for La Paz (Bolivia)
.
Ecología en Bolívia
2019
;
54
:
148
54
.

Mayr
E.
Animal Species and Evolution
.
Cambridge
:
Harvard University Press
,
1963
.

Mayr
E.
Principles of Systematic Zoology
.
New Delhi
:
Tata McGraw-Hill
,
1969
.

Médail
F
,
Baumel
A.
Using phylogeography to define conservation priorities: the case of narrow endemic plants in the Mediterranean Basin hotspot
.
Biological Conservation
2018
;
224
:
258
66
. https://doi.org/10.1016/j.biocon.2018.05.028

Melo
S
,
Raianne
H
,
Conceição
J
Jr
et al. .
Breeding biology of the Endangered burrow-nesting lesser crescent-chested puffbird Malacoptila minor
.
Acta Ornithologica
2021
;
56
:
181
8
.

Mereles
MF.
Acerca de las extensiones de Cerrados y Cerradones en el Paraguay
.
Paraquaria Natural
2013
;
1
:
35
8
.

Milá
B
,
Tavares
ES
,
Saldaña
AM
et al. .
A Trans-Amazonian screening of mtDNA reveals deep intraspecific divergence in forest birds and suggests a vast underestimation of species diversity
.
PLoS One
2012
;
7
:
e40541
.

Moritz
C.
Defining ‘Evolutionarily Significant Units’ for conservation
.
Trends in Ecology & Evolution
1994
;
9
:
373
5
. https://doi.org/10.1016/0169-5347(94)90057-4

Morrone
JJ.
On the identification of areas of endemism
.
Systematic Biology
1994
;
43
:
438
41
. https://doi.org/10.2307/2413679

Myers
N
,
Mittermeier
RA
,
Mittermeier
CG
et al. .
Biodiversity hotspots for conservation priorities
.
Nature
2000
;
403
:
853
8
. https://doi.org/10.1038/35002501

Nogueira
C
,
Ribeiro
S
,
Costa
GC
et al. .
Vicariance and endemism in a Neotropical savanna hotspot: distribution patterns of Cerrado squamate reptiles
.
Journal of Biogeography
2011
;
38
:
1907
22
. https://doi.org/10.1111/j.1365-2699.2011.02538.x

Nori
J
,
Semhan
R
,
Abdala
CS
et al. .
Filling Linnean shortfalls increases endemicity patterns: conservation and biogeographical implications for the extreme case of Liolaemus (Liolaemidae, Squamata) species
.
Zoological Journal of the Linnean Society
2022
;
194
:
592
600
. https://doi.org/10.1093/zoolinnean/zlab012

O’Hara
RJ.
Systematic generalization, historical fate, and the species problem
.
Systematic Biology
1993
;
42
:
231
46
.

Oliveira
PS
,
Marquis
RJ
(eds).
The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna
.
New York
:
Columbia University Press
,
2002
.

Oliveira
U
,
Brescovit
AD
,
Santos
AJ.
Delimiting areas of endemism through Kernel interpolation
.
PLoS One
2015
;
10
:
e0116673
. https://doi.org/10.1371/journal.pone.0116673

Olmos
F
,
Silva e Silva
R
,
Pacheco
JF.
The range of the bananal antbird Cercomacra ferdinandi
.
Cotinga
2006
;
25
:
21
3
.

Oniki
Y
,
Willis
EO.
Bibliography of Brazilian Birds: 1500–2002
.
Rio Claro
:
Divisa
,
2002
.

Pacífico
R
,
Almeda
F
,
Forota
A
et al. .
Areas of endemism on Brazilian mountaintops revealed by taxonomically verified records of Microlicieae (Melastomataceae)
.
Phytotaxa
2020
;
450
:
119
48
.

Paynter
RA
Jr.
Ornithological Gazetteer of Paraguay
, 2nd edn.
Cambridge
:
Museum of Comparative Zoology
,
1989
.

Paynter
RA
Jr.
Ornithological Gazetteer of Bolivia
, 2nd edn.
Cambridge
:
Museum of Comparative Zoology
,
1992
.

Paynter
RA
Jr,
Traylor
MA
Jr
.
Ornithological Gazetteer of Brazil
, Vol.
2
.
Cambridge
:
Museum of Comparative Zoology
,
1991
.

Peters
JL.
Check-List of Birds of the World
, Vols
1–16
.
Cambridge
:
Harvard University Press, Museum of Comparative Zoology
,
1931–1987
.

Peterson
AT.
Taxonomy is important in conservation: a preliminary reassessment of Philippine species-level bird taxonomy
.
Bird Conservation International
2006
;
16
:
155
73
. https://doi.org/10.1017/s0959270906000256

Peterson
AT
,
Navarro-Singüenza
AG.
Alternate species concepts as bases for determining priority conservation areas
.
Conservation Biology
1999
;
13
:
427
31
.

Piacentini
VQ.
Taxonomia e distribuição geográfica dos representantes do gênero Phaethornis Swainson, 1827 (Aves: Trochilidae)
, Vol.
2
.
Ph.D. Thesis. Departamento de Zoologia
,
Universidade de São Paulo
,
2011
.

Pichorim
M
,
Silva
M
,
França
BRA.
A Cerrado bird community in the northernmost portion of northeastern Brazil – recommendations for conservation
.
Revista Brasileira de Ornitologia
2014
;
22
:
347
62
.

Pinho
JB
,
Lopes
LE
,
Marini
MA.
Birds from the Pirizal region, Pantanal of Poconé, Mato Grosso, Brazil
.
Revista Brasileira de Ornitologia
2016
;
24
:
267
85
.

Pinto
OMO.
Catálogo das aves do Brasil e lista dos exemplares que as representam no Museu Paulista. 1a parte: Aves não Passeriformes e Passeriformes não Oscines excluída a fam. Tyrannidae e seguintes
.
Revista do Museu Paulista
1938
;
22
:
i–xviii + 1
566
.

Pinto
OMO.
Catálogo das aves do Brasil e lista dos exemplares existentes na coleção do Departamento de Zoologia, 2a parte. Ordem Passeriformes (continuação): superfamília Tyrannoidea e subordem Passeres
.
São Paulo
:
Departamento de Zoologia, Secretaria da Agricultura, Indústria e Comércio
,
1944
.

Pinto
OMO.
Ornitologia Brasiliense: catálogo descritivo e ilustrado das aves do Brasil
, Vol.
1
.
São Paulo
:
Departamento de Zoologia da Secretaria de Agricultura do Estado de São Paulo
,
1964
.

Pinto
OMO.
Novo catálogo das aves do Brasil, primeira parte – Aves não Passeriformes e Passeriformes não Oscines, com exclusão da família Tyrannidae
.
São Paulo
:
Empresa Gráfica da Revista dos Tribunais
,
1978
.

Prado
AD.
Celeus obrieni: 80 anos depois
.
Atualidades Ornitológicas
2006
;
134
:
4
5
.

QGIS Development Team
.
QGIS Geographic Information System, version 3.4.1 [Computer program]
.
Open Source Geospatial Foundation Project
,
2021
.

Ratter
JA.
Transitions between cerrado and forest vegetation in Brazil
. In:
Furley
PA
,
Proctor
J
(eds.),
Nature and Dynamics of Forest-Savanna Boundaries
.
London
:
Chapman & Hall
,
1982
,
417
29
.

Ratter
JA.
Notes on the vegetation of the Parque Nacional do Araguaia (Brazil)
.
Notes from the Royal Botanic Garden Edinburgh
1987
;
44
:
311
42
.

Ratter
JA
,
Bridgewater
S
,
Ribeiro
JF.
Biodiversity patterns of the woody vegetation of the Brazilian Cerrado
. In:
Pennington
RT
,
Lewis
GP
,
Ratter
JA
(eds),
Neotropical Savannas and Seasonally Dry Forests – Plant Diversity, Biogeography, and Conservation
.
Boca Raton
:
Taylor & Francis Group
,
2006
,
31
66
.

Ratter
JA
,
Ribeiro
JF
,
Bridgewater
S.
The Brazilian Cerrado vegetation and threats to its biodiversity
.
Annals of Botany
1997
;
80
:
223
30
.

Remsen
JV
Jr.
Subspecies as a meaningful taxonomic rank in avian classification
.
Ornithological Monographs
2010
;
67
:
6278
.

Remsen
JV
Jr,
Areta
JI
,
Bonaccorso
E
et al. .
A Classification of the Bird Species of South America, v. 26 April 2023
.
American Ornithological Society
,
2023
. www.museum.lsu.edu/~Remsen/SACCBaseline.htm (
April 2023
, date last accessed).

Remsen
JV
Jr,
Parker
TA
III
.
Contribution of river-created habitats to bird species richness in Amazonia
.
Biotropica
1983
;
15
:
223
31
.

Remsen
JV
Jr,
Traylor
MA
Jr
.
An Annotated List of the Birds of Bolivia
.
Vermilion
:
Buteo Books
,
1989
.

Ribeiro
JF
,
Walter
BMT.
As principais fitofisionomias do bioma Cerrado
. In:
Sano
SM
,
Almeida
SP
,
Ribeiro
JF
(eds.),
Cerrado ecologia e flora
, Vol.
1
.
Brasília
:
Embrapa Cerrados
,
2008
,
151
212
.

Ribeiro
KT
,
Nascimento
JS
,
Madeira
JA
et al. .
Aferição dos limites da Mata Atlântica na Serra do Cipó, MG, Brasil, visando maior compreensão e proteção de um mosaico vegetacional fortemente ameaçado
.
Natureza & Conservação
2009
;
7
:
30
49
.

Ribon
R.
Colonization of eastern Brazil by the cinereous warbling-finch, with some comments on its natural history
.
Third North American Ornithological Conference – Abstracts
.
New Orleans
:
American Ornithologists’ Union
,
2002
,
r585
.

Ridgely
RS
,
Tudor
G.
Field Guide to the Songbirds of South America: the Passerines
.
Austin
:
University of Texas Press
,
2009
.

Silva
JMC.
Comentários sobre Campylopterus largipennis diamantinensis Ruschi (Aves: Trochilidae)
. In:
Araújo
AMLV
(ed.),
XVII Congresso Brasileiro de Zoologia – Resumos
.
Londrina
:
Sociedade Brasileira de Zoologia, Universidade Estadual de Londrina
,
1990
,
168
.

Silva
JMC.
Avian inventory of the Cerrado region, South America: implications for biological conservation
.
Bird Conservation International
1995a
;
5
:
291
304
.

Silva
JMC.
Birds of the Cerrado Region, South America
.
Steenstrupia
1995b
;
21
:
69
92
.

Silva
JMC.
Distribution of Amazonian and Atlantic birds in gallery forests of the Cerrado region, South America
.
Ornitología Neotropical
1996
;
7
:
1
18
.

Silva
JMC.
Endemic bird species and conservation in the Cerrado Region, South America
.
Biodiversity and Conservation
1997
;
6
:
435
50
.

Silva
JMC
,
Bates
JM.
Biogeographic patterns and conservation in the South American Cerrado: a tropical savanna hotspot
.
BioScience
2002
;
52
:
225
33
.

Silva
JMC
,
Oren
DC.
Notes on Knipolegus franciscanus Snethlage, 1928 (Aves: Tyrannidae), an endemism of central Brazilian dry forests
.
Goeldiana Zoologia
1992
;
16
:
1
9
.

Silva
JMC
,
Santos
MPD.
A importância relativa dos processos biogeográficos na formação da avifauna do Cerrado e de outros biomas brasileiros
. In:
Scariot
A
,
Souza-Silva
JC
,
Felfili
JM
(eds.),
Cerrado: Ecologia, Biodiversidade e conservação
.
Brasília
:
Ministério do Meio Ambiente
,
2005
,
220
33
.

Silveira
FAO
,
Negreiros
D
,
Barbosa
NPU
et al. .
Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority
.
Plant and Soil
2016
;
403
:
129
52
. https://doi.org/10.1007/s11104-015-2637-8

Simon
MF
,
Proença
C.
Phytogeographic patterns of Mimosa (Mimosoideae, Leguminosae) in the Cerrado biome of Brazil: an indicator genus of high-altitude centers of endemism
?
Biological Conservation
2000
;
96
:
279
96
. https://doi.org/10.1016/s0006-3207(00)00085-9

Slatyer
C
,
Rosauer
D
,
Lemckert
F.
An assessment of endemism and species richness patterns in the Australian Anura
.
Journal of Biogeography
2007
;
34
:
583
96
. https://doi.org/10.1111/j.1365-2699.2006.01647.x

Stankowski
S
,
Ravinet
M.
Quantifying the use of species concepts
.
Current Biology
2021
;
31
:
R428
9
. https://doi.org/10.1016/j.cub.2021.03.060

Stattersfield
AJ
,
Crosby
MJ
,
Long
AJ
et al. .
Endemic Bird Areas of the World: Priorities for Biodiversity Conservation
.
Cambridge
:
BirdLife International
,
1998
.

Terrill
RS
,
Aponte Justiniano
MA
,
Harvey
MG
et al. .
Notes on the avifauna of the floodplain forest of the Rio Mamoré, Beni, Bolivia, with a description of the juvenile plumage of unicolored thrush (Turdus haplochrous) (Aves: Turdidae)
.
Occasional Papers of the Museum of Natural Science, Louisiana State University
2014
;
1
:
1
21
.

Valdujo
PH
,
Silvano
DL
,
Colli
GR
et al. .
Anuran species composition and distribution patterns in Brazilian Cerrado, a neotropical hotspot
.
South American Journal of Herpetology
2012
;
7
:
63
78
. https://doi.org/10.2994/057.007.0209

Valente
CR
,
Latrubesse
EM
,
Ferreira
LG.
Relationships among vegetation, geomorphology and hydrology in the Bananal Island tropical wetlands, Araguaia River basin, Central Brazil
.
Journal of South American Earth Sciences
2013
;
46
:
150
60
. https://doi.org/10.1016/j.jsames.2012.12.003

Vanzolini
PE.
A Supplement to the Ornithological Gazetteer of Brazil
.
São Paulo
:
Museu de Zoologia, Universidade de São Paulo
,
1992
.

Vasconcelos
MF.
O que são campos rupestres e campos de altitude nos topos de montanha do Leste do Brasil
?
Revista Brasileira de Botânica
2011
;
34
:
241
6
.

Vieira
LTA
,
Azevedo
TN
,
Castro
AAJF
et al. .
Reviewing the Cerrado’s limits, flora distribution patterns, and conservation status for policy decisions
.
Land Use Policy
2022
;
115
:
106038
.

Villarroel
D
,
Munhoz
CBR
,
Proença
CEB.
Campos y sabanas del Cerrado en Bolivia: delimitación, síntesis terminológica y sus caracteristicas fisionômicas
.
Kempffiana
2016
;
12
:
47
80
.

Vinarski
MV.
The fate of subspecies category in zoological systematics. 1. The history
.
Biology Bulletin Reviews
2015
;
5
:
395
404
. https://doi.org/10.1134/s2079086415050060

Walter
BMT.
Fitofisionomias do bioma Cerrado: síntese terminológica e relações florísticas
.
Ph.D. Thesis. Departamento de Ecologia
,
Universidade de Brasília
,
2006
.

Walter
BMT
,
Carvalho
AM
,
Ribeiro
JF.
O conceito de savana e de seu componente Cerrado
. In:
Sano
SM
,
Almeida
SP
,
Ribeiro
JF
(eds.),
Cerrado Ecologia e Flora
, Vol.
1
.
Brasília
:
Embrapa Cerrados
,
2008
,
19
45
.

Werneck
FP
,
Colli
GR.
The lizard assemblage from seasonally dry tropical forest enclaves in the Cerrado biome, Brazil, and its association with the Pleistocene Arc
.
Journal of Biogeography
2006
;
33
:
1983
92
. https://doi.org/10.1111/j.1365-2699.2006.01553.x

Winston
JE.
Describing Species: Practical Taxonomic Procedure for Biologists
.
New York
:
Columbia University Press
,
1999
.

Zimmer
JT.
Studies of Peruvian birds. Nos. 1–65
. Vol.
500
.
American Museum Novitates
,
1931–1953
.

Zink
RM.
The role of subspecies in obscuring avian biological diversity and misleading conservation policy
.
Proceedings of the Royal Society B: Biological Sciences
2004
;
271
:
561
4
.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://dbpia.nl.go.kr/pages/standard-publication-reuse-rights)