Figure 2.
Histograms of plasma bulk parameters determined by applying the three different fit methods to the same measurement samples. (Left) Density $n_{\mathrm{out}}$ (middle) temperature $k_{\mathrm{B}} T_{\mathrm{out}}$, and (right) kappa index $\kappa _{\mathrm{out}}$, determined by using Method A: chi-squared minimization with data-driven uncertainty (grey), Method B: chi-squared minimization with model-driven uncertainty (red), and Method C: maximum-likelihood method (blue). The simulations consider $n_{\mathrm{in}}$ = 10 cm−3, $k_{\mathrm{B}} T_{\mathrm{in}}$ = 12 eV, $\kappa _{\mathrm{in}}$ = 3, and an instrument $G_{\mathrm{F}}\sim 8.1\times 10^{-9}$  $\mathrm{m}^2\, \mathrm{sr}\, \mathrm{eV}\, \mathrm{eV}^{-1}$.

Histograms of plasma bulk parameters determined by applying the three different fit methods to the same measurement samples. (Left) Density |$n_{\mathrm{out}}$| (middle) temperature |$k_{\mathrm{B}} T_{\mathrm{out}}$|⁠, and (right) kappa index |$\kappa _{\mathrm{out}}$|⁠, determined by using Method A: chi-squared minimization with data-driven uncertainty (grey), Method B: chi-squared minimization with model-driven uncertainty (red), and Method C: maximum-likelihood method (blue). The simulations consider |$n_{\mathrm{in}}$| = 10 cm−3, |$k_{\mathrm{B}} T_{\mathrm{in}}$| = 12 eV, |$\kappa _{\mathrm{in}}$| = 3, and an instrument |$G_{\mathrm{F}}\sim 8.1\times 10^{-9}$|  |$\mathrm{m}^2\, \mathrm{sr}\, \mathrm{eV}\, \mathrm{eV}^{-1}$|⁠.

Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close