Fig. 1.
Behaviors of |$ \Lambda_0$| (|$ x$| ) and |$ F$| (|$ x$| ,|$ \theta_{\rm H}$| ) for |$ \theta_{\rm H} =$| 0 and |$ \pi/2$| [see equations (47)-(51)]. Note that |$ \Lambda$| (|$ x$| ,|$ \theta_{\rm H}; h^2$| ) is obtained by adding |$ F$| (|$ x,\theta_{\rm H}$| ) multiplied by factor |$ h^2$| to |$ \Lambda_0$| (|$ x$| ), and |$ x_{\rm N}$| is given by adding |$-h^2$| (2|$ ^{1/3}$| )|$ F$| (2|$ ^{1/3}$| ,|$ \theta_{\rm H}$| ) to 2|$ ^{1/3}$| , as seen in equation (52). |$ f_{\rm H} = f$| (1) |$ =$| 0.5676. (Color online)