Figure 1
The change (ΔP/P)/(Δm1/M) as a function of mass ratio, q=M2/M1. For the solid line the ejected mass just carries away its specific angular momentum (equation 9). The dotted line shows the case where accretion on to the secondary is considered (corresponding separation change in equation 11). The short-dashed line includes accretion on to the secondary and frictional angular momentum losses (corresponding separation change in equation 14). The long-dashed line takes into account the angular momentum change of the ejected material due to a magnetic field on the secondary that has RA = 0.75 a (corresponding separation change in equation 29). We calculate the period change from the separation change with equation (8).

The change (ΔP/P)/(Δm1/M) as a function of mass ratio, q=M2/M1. For the solid line the ejected mass just carries away its specific angular momentum (equation 9). The dotted line shows the case where accretion on to the secondary is considered (corresponding separation change in equation 11). The short-dashed line includes accretion on to the secondary and frictional angular momentum losses (corresponding separation change in equation 14). The long-dashed line takes into account the angular momentum change of the ejected material due to a magnetic field on the secondary that has RA = 0.75 a (corresponding separation change in equation 29). We calculate the period change from the separation change with equation (8).

Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close