Table 7.

Values for the coefficients of the PL, PW and PLC relations for BL Her and W Vir Cepheids taken from the literature. The PW functions are defined as in Table 5. The errors of ZP take into account the uncertainties in the transformation of the J and Ks photometry to the VISTA system (see the text for details).

MethodRelationσ (mag)
Results by Matsunaga et al. (2006, 2009) transformed to the VISTA system
PL(J) GCsMJ, 0 = (−2.23 ± 0.05)log P − (0.84 ± 0.03)0.16
PL(J) LMCJ0 = (−2.16 ± 0.04)log P + (17.76 ± 0.03)0.21
PL(Ks) GCs|$M_{K_\mathrm{s,0}} = (-2.41\pm 0.05)\log P-(1.11\pm 0.03)$|0.14
PL(Ks) LMCKs, 0 = (−2.28 ± 0.05)log P + (17.40 ± 0.03)0.21
Results by Di Criscienzo et al. (2007) transformed to the VISTA system
PL(J)MJ, 0 = (−2.29 ± 0.04)log P − (0.73 ± 0.13)
PL(Ks)|$M_{K_\mathrm{s,0}} = (-2.38\pm 0.02)\log P-(1.10\pm 0.07)$|
PW(J, V)MJ − 0.41(V − J) = ( − 2.37 ± 0.02)log P − (1.15 ± 0.08)
PW(Ks, V)|$M_{K_\mathrm{s}}-0.13(V-K_\mathrm{s}) = (-2.52\pm 0.02)\log P-(1.25\pm 0.08)$|
PW(Ks, J)Ks − 0.69(J − Ks) = ( − 2.60 ± 0.02)log P − (1.27 ± 0.08)
MethodRelationσ (mag)
Results by Matsunaga et al. (2006, 2009) transformed to the VISTA system
PL(J) GCsMJ, 0 = (−2.23 ± 0.05)log P − (0.84 ± 0.03)0.16
PL(J) LMCJ0 = (−2.16 ± 0.04)log P + (17.76 ± 0.03)0.21
PL(Ks) GCs|$M_{K_\mathrm{s,0}} = (-2.41\pm 0.05)\log P-(1.11\pm 0.03)$|0.14
PL(Ks) LMCKs, 0 = (−2.28 ± 0.05)log P + (17.40 ± 0.03)0.21
Results by Di Criscienzo et al. (2007) transformed to the VISTA system
PL(J)MJ, 0 = (−2.29 ± 0.04)log P − (0.73 ± 0.13)
PL(Ks)|$M_{K_\mathrm{s,0}} = (-2.38\pm 0.02)\log P-(1.10\pm 0.07)$|
PW(J, V)MJ − 0.41(V − J) = ( − 2.37 ± 0.02)log P − (1.15 ± 0.08)
PW(Ks, V)|$M_{K_\mathrm{s}}-0.13(V-K_\mathrm{s}) = (-2.52\pm 0.02)\log P-(1.25\pm 0.08)$|
PW(Ks, J)Ks − 0.69(J − Ks) = ( − 2.60 ± 0.02)log P − (1.27 ± 0.08)
Table 7.

Values for the coefficients of the PL, PW and PLC relations for BL Her and W Vir Cepheids taken from the literature. The PW functions are defined as in Table 5. The errors of ZP take into account the uncertainties in the transformation of the J and Ks photometry to the VISTA system (see the text for details).

MethodRelationσ (mag)
Results by Matsunaga et al. (2006, 2009) transformed to the VISTA system
PL(J) GCsMJ, 0 = (−2.23 ± 0.05)log P − (0.84 ± 0.03)0.16
PL(J) LMCJ0 = (−2.16 ± 0.04)log P + (17.76 ± 0.03)0.21
PL(Ks) GCs|$M_{K_\mathrm{s,0}} = (-2.41\pm 0.05)\log P-(1.11\pm 0.03)$|0.14
PL(Ks) LMCKs, 0 = (−2.28 ± 0.05)log P + (17.40 ± 0.03)0.21
Results by Di Criscienzo et al. (2007) transformed to the VISTA system
PL(J)MJ, 0 = (−2.29 ± 0.04)log P − (0.73 ± 0.13)
PL(Ks)|$M_{K_\mathrm{s,0}} = (-2.38\pm 0.02)\log P-(1.10\pm 0.07)$|
PW(J, V)MJ − 0.41(V − J) = ( − 2.37 ± 0.02)log P − (1.15 ± 0.08)
PW(Ks, V)|$M_{K_\mathrm{s}}-0.13(V-K_\mathrm{s}) = (-2.52\pm 0.02)\log P-(1.25\pm 0.08)$|
PW(Ks, J)Ks − 0.69(J − Ks) = ( − 2.60 ± 0.02)log P − (1.27 ± 0.08)
MethodRelationσ (mag)
Results by Matsunaga et al. (2006, 2009) transformed to the VISTA system
PL(J) GCsMJ, 0 = (−2.23 ± 0.05)log P − (0.84 ± 0.03)0.16
PL(J) LMCJ0 = (−2.16 ± 0.04)log P + (17.76 ± 0.03)0.21
PL(Ks) GCs|$M_{K_\mathrm{s,0}} = (-2.41\pm 0.05)\log P-(1.11\pm 0.03)$|0.14
PL(Ks) LMCKs, 0 = (−2.28 ± 0.05)log P + (17.40 ± 0.03)0.21
Results by Di Criscienzo et al. (2007) transformed to the VISTA system
PL(J)MJ, 0 = (−2.29 ± 0.04)log P − (0.73 ± 0.13)
PL(Ks)|$M_{K_\mathrm{s,0}} = (-2.38\pm 0.02)\log P-(1.10\pm 0.07)$|
PW(J, V)MJ − 0.41(V − J) = ( − 2.37 ± 0.02)log P − (1.15 ± 0.08)
PW(Ks, V)|$M_{K_\mathrm{s}}-0.13(V-K_\mathrm{s}) = (-2.52\pm 0.02)\log P-(1.25\pm 0.08)$|
PW(Ks, J)Ks − 0.69(J − Ks) = ( − 2.60 ± 0.02)log P − (1.27 ± 0.08)
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close