Values for the coefficients of the PL, PW and PLC relations for BL Her and W Vir Cepheids taken from the literature. The PW functions are defined as in Table 5. The errors of ZP take into account the uncertainties in the transformation of the J and Ks photometry to the VISTA system (see the text for details).
Method . | Relation . | σ (mag) . |
---|---|---|
Results by Matsunaga et al. (2006, 2009) transformed to the VISTA system | ||
PL(J) GCs | MJ, 0 = (−2.23 ± 0.05)log P − (0.84 ± 0.03) | 0.16 |
PL(J) LMC | J0 = (−2.16 ± 0.04)log P + (17.76 ± 0.03) | 0.21 |
PL(Ks) GCs | |$M_{K_\mathrm{s,0}} = (-2.41\pm 0.05)\log P-(1.11\pm 0.03)$| | 0.14 |
PL(Ks) LMC | Ks, 0 = (−2.28 ± 0.05)log P + (17.40 ± 0.03) | 0.21 |
Results by Di Criscienzo et al. (2007) transformed to the VISTA system | ||
PL(J) | MJ, 0 = (−2.29 ± 0.04)log P − (0.73 ± 0.13) | |
PL(Ks) | |$M_{K_\mathrm{s,0}} = (-2.38\pm 0.02)\log P-(1.10\pm 0.07)$| | |
PW(J, V) | MJ − 0.41(V − J) = ( − 2.37 ± 0.02)log P − (1.15 ± 0.08) | |
PW(Ks, V) | |$M_{K_\mathrm{s}}-0.13(V-K_\mathrm{s}) = (-2.52\pm 0.02)\log P-(1.25\pm 0.08)$| | |
PW(Ks, J) | Ks − 0.69(J − Ks) = ( − 2.60 ± 0.02)log P − (1.27 ± 0.08) |
Method . | Relation . | σ (mag) . |
---|---|---|
Results by Matsunaga et al. (2006, 2009) transformed to the VISTA system | ||
PL(J) GCs | MJ, 0 = (−2.23 ± 0.05)log P − (0.84 ± 0.03) | 0.16 |
PL(J) LMC | J0 = (−2.16 ± 0.04)log P + (17.76 ± 0.03) | 0.21 |
PL(Ks) GCs | |$M_{K_\mathrm{s,0}} = (-2.41\pm 0.05)\log P-(1.11\pm 0.03)$| | 0.14 |
PL(Ks) LMC | Ks, 0 = (−2.28 ± 0.05)log P + (17.40 ± 0.03) | 0.21 |
Results by Di Criscienzo et al. (2007) transformed to the VISTA system | ||
PL(J) | MJ, 0 = (−2.29 ± 0.04)log P − (0.73 ± 0.13) | |
PL(Ks) | |$M_{K_\mathrm{s,0}} = (-2.38\pm 0.02)\log P-(1.10\pm 0.07)$| | |
PW(J, V) | MJ − 0.41(V − J) = ( − 2.37 ± 0.02)log P − (1.15 ± 0.08) | |
PW(Ks, V) | |$M_{K_\mathrm{s}}-0.13(V-K_\mathrm{s}) = (-2.52\pm 0.02)\log P-(1.25\pm 0.08)$| | |
PW(Ks, J) | Ks − 0.69(J − Ks) = ( − 2.60 ± 0.02)log P − (1.27 ± 0.08) |
Values for the coefficients of the PL, PW and PLC relations for BL Her and W Vir Cepheids taken from the literature. The PW functions are defined as in Table 5. The errors of ZP take into account the uncertainties in the transformation of the J and Ks photometry to the VISTA system (see the text for details).
Method . | Relation . | σ (mag) . |
---|---|---|
Results by Matsunaga et al. (2006, 2009) transformed to the VISTA system | ||
PL(J) GCs | MJ, 0 = (−2.23 ± 0.05)log P − (0.84 ± 0.03) | 0.16 |
PL(J) LMC | J0 = (−2.16 ± 0.04)log P + (17.76 ± 0.03) | 0.21 |
PL(Ks) GCs | |$M_{K_\mathrm{s,0}} = (-2.41\pm 0.05)\log P-(1.11\pm 0.03)$| | 0.14 |
PL(Ks) LMC | Ks, 0 = (−2.28 ± 0.05)log P + (17.40 ± 0.03) | 0.21 |
Results by Di Criscienzo et al. (2007) transformed to the VISTA system | ||
PL(J) | MJ, 0 = (−2.29 ± 0.04)log P − (0.73 ± 0.13) | |
PL(Ks) | |$M_{K_\mathrm{s,0}} = (-2.38\pm 0.02)\log P-(1.10\pm 0.07)$| | |
PW(J, V) | MJ − 0.41(V − J) = ( − 2.37 ± 0.02)log P − (1.15 ± 0.08) | |
PW(Ks, V) | |$M_{K_\mathrm{s}}-0.13(V-K_\mathrm{s}) = (-2.52\pm 0.02)\log P-(1.25\pm 0.08)$| | |
PW(Ks, J) | Ks − 0.69(J − Ks) = ( − 2.60 ± 0.02)log P − (1.27 ± 0.08) |
Method . | Relation . | σ (mag) . |
---|---|---|
Results by Matsunaga et al. (2006, 2009) transformed to the VISTA system | ||
PL(J) GCs | MJ, 0 = (−2.23 ± 0.05)log P − (0.84 ± 0.03) | 0.16 |
PL(J) LMC | J0 = (−2.16 ± 0.04)log P + (17.76 ± 0.03) | 0.21 |
PL(Ks) GCs | |$M_{K_\mathrm{s,0}} = (-2.41\pm 0.05)\log P-(1.11\pm 0.03)$| | 0.14 |
PL(Ks) LMC | Ks, 0 = (−2.28 ± 0.05)log P + (17.40 ± 0.03) | 0.21 |
Results by Di Criscienzo et al. (2007) transformed to the VISTA system | ||
PL(J) | MJ, 0 = (−2.29 ± 0.04)log P − (0.73 ± 0.13) | |
PL(Ks) | |$M_{K_\mathrm{s,0}} = (-2.38\pm 0.02)\log P-(1.10\pm 0.07)$| | |
PW(J, V) | MJ − 0.41(V − J) = ( − 2.37 ± 0.02)log P − (1.15 ± 0.08) | |
PW(Ks, V) | |$M_{K_\mathrm{s}}-0.13(V-K_\mathrm{s}) = (-2.52\pm 0.02)\log P-(1.25\pm 0.08)$| | |
PW(Ks, J) | Ks − 0.69(J − Ks) = ( − 2.60 ± 0.02)log P − (1.27 ± 0.08) |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.