Table 1.

Description of different growth function.

FunctionEquation1Reference
BrodyY   =   A(1   -   Be~-KT)(Brody, 1945)
GompertzY   =   Ae~-Be~-KT(Winsor, 1932)
LogisticY   =   A1+Be~-KT(Nelder, 1961)
Negative exponentialY   =   A-(Ae~-KT)(Ghavi Hossein-Zadeh, 2015)
RichardsY   =   A(1-Be~-KT)M(Richards, 1959)
von BertalanffyY   =A(1-Be~-KT)3(von Bertalanffy, 1957)
FunctionEquation1Reference
BrodyY   =   A(1   -   Be~-KT)(Brody, 1945)
GompertzY   =   Ae~-Be~-KT(Winsor, 1932)
LogisticY   =   A1+Be~-KT(Nelder, 1961)
Negative exponentialY   =   A-(Ae~-KT)(Ghavi Hossein-Zadeh, 2015)
RichardsY   =   A(1-Be~-KT)M(Richards, 1959)
von BertalanffyY   =A(1-Be~-KT)3(von Bertalanffy, 1957)

1Y = observed body weight at age T (days); A = Asymptotic weight; B = Integrated constant; K = rate of maturity; M = inflection point to A.

Table 1.

Description of different growth function.

FunctionEquation1Reference
BrodyY   =   A(1   -   Be~-KT)(Brody, 1945)
GompertzY   =   Ae~-Be~-KT(Winsor, 1932)
LogisticY   =   A1+Be~-KT(Nelder, 1961)
Negative exponentialY   =   A-(Ae~-KT)(Ghavi Hossein-Zadeh, 2015)
RichardsY   =   A(1-Be~-KT)M(Richards, 1959)
von BertalanffyY   =A(1-Be~-KT)3(von Bertalanffy, 1957)
FunctionEquation1Reference
BrodyY   =   A(1   -   Be~-KT)(Brody, 1945)
GompertzY   =   Ae~-Be~-KT(Winsor, 1932)
LogisticY   =   A1+Be~-KT(Nelder, 1961)
Negative exponentialY   =   A-(Ae~-KT)(Ghavi Hossein-Zadeh, 2015)
RichardsY   =   A(1-Be~-KT)M(Richards, 1959)
von BertalanffyY   =A(1-Be~-KT)3(von Bertalanffy, 1957)

1Y = observed body weight at age T (days); A = Asymptotic weight; B = Integrated constant; K = rate of maturity; M = inflection point to A.

Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close