H i recombination lines corresponding to the decays of the first eight series (starting with Balmer, |$n=2$|) up to |$n=10$| that have been tested in our pure hydrogen plasma model at |$T=10^4$|K. The columns in the right contain the maximum resolved principal quantum number n at which the line intensity converge for less than 5 per cent and 1 per cent with respect to the models with maximum resolved levels |$n^\text{res} = n-5$| (convergence ratios start to be calculated at |$n=15$|). We show these at hydrogen densities of |$10^5\,\text{cm}^{-3} \le \boldsymbol {n}_\text{H} \le 10^7$|. For each density, the maximum percentage difference induced by changing the maximum resolved level from |$n = 70$| to |$n = 10$| is also shown (columns ‘Diff.’).
|$\lambda$| . | Transition . | comments . | Convergence at |$\mathbf {n}_\text{H}=10^5\text{cm}^{-3}$| . | Convergence at |$\mathbf {n}_\text{H}=10^6\text{cm}^{-3}$| . | Convergence at |$\mathbf {n}_\text{H}=10^7\text{cm}^{-3}$| . | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
. | . | . | n (|$<$|5 per cent) . | n (|$<$|1 per cent) . | Diff. (per cent) . | n (|$<$|5 per cent) . | n (|$<$|1 per cent) . | Diff. (per cent) . | n (|$<$|5 per cent) . | n (|$<$|1 per cent) . | Diff. (per cent) . |
1215.67 Å | |$1\, ^2S-2\, ^2P$| | Ly |$\alpha$| | 15 | 15 | 0.01 | 15 | 15 | 0.02 | 15 | 15 | 0.02 |
3797.90 Å | |$2\, ^2S-n= 10$| | 15 | 15 | 1.07 | 15 | 15 | 0.26 | 15 | 15 | 0.60 | |
3835.38 Å | |$2\, ^2S-n= 9$| | 15 | 15 | 1.11 | 15 | 15 | 0.44 | 15 | 15 | 0.24 | |
3889.05 Å | |$2\, ^2S-n= 8$| | 15 | 15 | 1.11 | 15 | 15 | 0.51 | 15 | 15 | 0.04 | |
3970.07 Å | |$2\, ^2S-n= 7$| | 15 | 15 | 1.06 | 15 | 15 | 0.52 | 15 | 15 | 0.05 | |
4101.73 Å | |$2\, ^2S-n= 6$| | 15 | 15 | 0.97 | 15 | 15 | 0.48 | 15 | 15 | 0.08 | |
4340.46 Å | |$2\, ^2S-n= 5$| | 15 | 15 | 0.78 | 15 | 15 | 0.39 | 15 | 15 | 0.08 | |
4861.32 Å | |$2\, ^2S-n= 4$| | H|$\beta$| | 15 | 15 | 0.30 | 15 | 15 | 0.15 | 15 | 15 | 0.03 |
6562.80 Å | |$2\, ^2S-n= 3$| | H|$\alpha$| | 15 | 20 | 1.44 | 15 | 15 | 0.68 | 15 | 15 | 0.13 |
9014.91 Å | |$n= 3-n= 10$| | 15 | 15 | 0.02 | 15 | 15 | 0.44 | 15 | 15 | 0.75 | |
9229.02 Å | |$n= 3-n= 9$| | 15 | 15 | 0.06 | 15 | 15 | 0.24 | 15 | 15 | 0.71 | |
9545.97Å | |$n= 3-n= 8$| | 15 | 15 | 0.23 | 15 | 15 | 0.19 | 15 | 15 | 0.23 | |
1.00494|$\mu$|m | |$n= 3-n= 7$| | 15 | 15 | 0.50 | 15 | 15 | 0.26 | 15 | 15 | 0.16 | |
1.09381|$\mu$|m | |$n= 3-n= 6$| | 15 | 15 | 1.00 | 15 | 15 | 0.48 | 15 | 15 | 0.16 | |
1.28181|$\mu$|m | |$n= 3-n= 5$| | 15 | 20 | 2.09 | 15 | 15 | 0.99 | 15 | 15 | 0.24 | |
1.73621|$\mu$|m | |$n= 4-n= 10$| | 15 | 20 | 1.80 | 15 | 20 | 1.04 | 15 | 15 | 0.93 | |
1.81741|$\mu$|m | |$n= 4-n= 9$| | 15 | 20 | 2.06 | 15 | 20 | 1.25 | 15 | 15 | 0.62 | |
1.87510|$\mu$|m | |$n= 3-n= 4$| | 15 | 25 | 5.46 | 15 | 20 | 2.62 | 15 | 15 | 0.51 | |
1.94456|$\mu$|m | |$n= 4-n= 8$| | 15 | 20 | 2.51 | 15 | 20 | 1.31 | 15 | 15 | 0.48 | |
2.16553|$\mu$|m | |$n= 4-n= 7$| | 15 | 20 | 3.30 | 15 | 20 | 1.61 | 15 | 15 | 0.45 | |
2.62515|$\mu$|m | |$n= 4-n= 6$| | 15 | 20 | 4.89 | 15 | 20 | 2.34 | 15 | 15 | 0.53 | |
3.03837|$\mu$|m | |$n= 5-n= 10$| | 15 | 20 | 4.14 | 15 | 20 | 2.53 | 15 | 20 | 1.13 | |
3.29609|$\mu$|m | |$n= 5-n= 9$| | 15 | 20 | 4.76 | 15 | 20 | 2.56 | 15 | 15 | 0.85 | |
3.73954|$\mu$|m | |$n= 5-n= 8$| | 15 | 25 | 5.78 | 15 | 20 | 2.89 | 15 | 15 | 0.77 | |
4.05115|$\mu$|m | |$n= 4-n= 5$| | 20 | 25 | 9.14 | 15 | 20 | 4.39 | 15 | 15 | 0.83 | |
4.65251|$\mu$|m | |$n= 5-n= 7$| | 20 | 25 | 7.74 | 15 | 20 | 3.76 | 15 | 15 | 0.83 | |
5.12726|$\mu$|m | |$n= 6-n= 10$| | 20 | 25 | 7.05 | 15 | 20 | 3.92 | 15 | 20 | 1.36 | |
5.90660|$\mu$|m | |$n= 6-n= 9$| | 20 | 25 | 8.29 | 15 | 20 | 4.26 | 15 | 20 | 1.13 | |
7.45782|$\mu$|m | |$n= 5-n= 6$| | 20 | 25 | 12.44 | 20 | 20 | 6.00 | 15 | 20 | 1.11 | |
7.50045|$\mu$|m | |$n= 6-n= 8$| | 20 | 25 | 10.50 | 15 | 20 | 5.17 | 15 | 20 | 1.13 | |
8.75768|$\mu$|m | |$n= 7-n= 10$| | 20 | 25 | 10.66 | 15 | 20 | 5.66 | 15 | 20 | 1.63 | |
11.3056|$\mu$|m | |$n= 7-n= 9$| | 20 | 25 | 13.06 | 20 | 20 | 6.58 | 15 | 20 | 1.46 | |
12.3685|$\mu$|m | |$n= 6-n= 7$| | 20 | 25 | 15.35 | 20 | 20 | 7.46 | 15 | 20 | 1.35 | |
16.2047|$\mu$|m | |$n= 8-n= 10$| | 20 | 25 | 15.31 | 20 | 20 | 7.99 | 15 | 20 | 1.98 | |
19.0567|$\mu$|m | |$n= 7-n= 8$| | 20 | 25 | 17.86 | 20 | 20 | 8.81 | 15 | 20 | 1.60 | |
27.7958|$\mu$|m | |$n= 8-n= 9$| | 25 | 30 | 20.01 | 20 | 20 | 10.13 | 15 | 20 | 1.92 |
|$\lambda$| . | Transition . | comments . | Convergence at |$\mathbf {n}_\text{H}=10^5\text{cm}^{-3}$| . | Convergence at |$\mathbf {n}_\text{H}=10^6\text{cm}^{-3}$| . | Convergence at |$\mathbf {n}_\text{H}=10^7\text{cm}^{-3}$| . | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
. | . | . | n (|$<$|5 per cent) . | n (|$<$|1 per cent) . | Diff. (per cent) . | n (|$<$|5 per cent) . | n (|$<$|1 per cent) . | Diff. (per cent) . | n (|$<$|5 per cent) . | n (|$<$|1 per cent) . | Diff. (per cent) . |
1215.67 Å | |$1\, ^2S-2\, ^2P$| | Ly |$\alpha$| | 15 | 15 | 0.01 | 15 | 15 | 0.02 | 15 | 15 | 0.02 |
3797.90 Å | |$2\, ^2S-n= 10$| | 15 | 15 | 1.07 | 15 | 15 | 0.26 | 15 | 15 | 0.60 | |
3835.38 Å | |$2\, ^2S-n= 9$| | 15 | 15 | 1.11 | 15 | 15 | 0.44 | 15 | 15 | 0.24 | |
3889.05 Å | |$2\, ^2S-n= 8$| | 15 | 15 | 1.11 | 15 | 15 | 0.51 | 15 | 15 | 0.04 | |
3970.07 Å | |$2\, ^2S-n= 7$| | 15 | 15 | 1.06 | 15 | 15 | 0.52 | 15 | 15 | 0.05 | |
4101.73 Å | |$2\, ^2S-n= 6$| | 15 | 15 | 0.97 | 15 | 15 | 0.48 | 15 | 15 | 0.08 | |
4340.46 Å | |$2\, ^2S-n= 5$| | 15 | 15 | 0.78 | 15 | 15 | 0.39 | 15 | 15 | 0.08 | |
4861.32 Å | |$2\, ^2S-n= 4$| | H|$\beta$| | 15 | 15 | 0.30 | 15 | 15 | 0.15 | 15 | 15 | 0.03 |
6562.80 Å | |$2\, ^2S-n= 3$| | H|$\alpha$| | 15 | 20 | 1.44 | 15 | 15 | 0.68 | 15 | 15 | 0.13 |
9014.91 Å | |$n= 3-n= 10$| | 15 | 15 | 0.02 | 15 | 15 | 0.44 | 15 | 15 | 0.75 | |
9229.02 Å | |$n= 3-n= 9$| | 15 | 15 | 0.06 | 15 | 15 | 0.24 | 15 | 15 | 0.71 | |
9545.97Å | |$n= 3-n= 8$| | 15 | 15 | 0.23 | 15 | 15 | 0.19 | 15 | 15 | 0.23 | |
1.00494|$\mu$|m | |$n= 3-n= 7$| | 15 | 15 | 0.50 | 15 | 15 | 0.26 | 15 | 15 | 0.16 | |
1.09381|$\mu$|m | |$n= 3-n= 6$| | 15 | 15 | 1.00 | 15 | 15 | 0.48 | 15 | 15 | 0.16 | |
1.28181|$\mu$|m | |$n= 3-n= 5$| | 15 | 20 | 2.09 | 15 | 15 | 0.99 | 15 | 15 | 0.24 | |
1.73621|$\mu$|m | |$n= 4-n= 10$| | 15 | 20 | 1.80 | 15 | 20 | 1.04 | 15 | 15 | 0.93 | |
1.81741|$\mu$|m | |$n= 4-n= 9$| | 15 | 20 | 2.06 | 15 | 20 | 1.25 | 15 | 15 | 0.62 | |
1.87510|$\mu$|m | |$n= 3-n= 4$| | 15 | 25 | 5.46 | 15 | 20 | 2.62 | 15 | 15 | 0.51 | |
1.94456|$\mu$|m | |$n= 4-n= 8$| | 15 | 20 | 2.51 | 15 | 20 | 1.31 | 15 | 15 | 0.48 | |
2.16553|$\mu$|m | |$n= 4-n= 7$| | 15 | 20 | 3.30 | 15 | 20 | 1.61 | 15 | 15 | 0.45 | |
2.62515|$\mu$|m | |$n= 4-n= 6$| | 15 | 20 | 4.89 | 15 | 20 | 2.34 | 15 | 15 | 0.53 | |
3.03837|$\mu$|m | |$n= 5-n= 10$| | 15 | 20 | 4.14 | 15 | 20 | 2.53 | 15 | 20 | 1.13 | |
3.29609|$\mu$|m | |$n= 5-n= 9$| | 15 | 20 | 4.76 | 15 | 20 | 2.56 | 15 | 15 | 0.85 | |
3.73954|$\mu$|m | |$n= 5-n= 8$| | 15 | 25 | 5.78 | 15 | 20 | 2.89 | 15 | 15 | 0.77 | |
4.05115|$\mu$|m | |$n= 4-n= 5$| | 20 | 25 | 9.14 | 15 | 20 | 4.39 | 15 | 15 | 0.83 | |
4.65251|$\mu$|m | |$n= 5-n= 7$| | 20 | 25 | 7.74 | 15 | 20 | 3.76 | 15 | 15 | 0.83 | |
5.12726|$\mu$|m | |$n= 6-n= 10$| | 20 | 25 | 7.05 | 15 | 20 | 3.92 | 15 | 20 | 1.36 | |
5.90660|$\mu$|m | |$n= 6-n= 9$| | 20 | 25 | 8.29 | 15 | 20 | 4.26 | 15 | 20 | 1.13 | |
7.45782|$\mu$|m | |$n= 5-n= 6$| | 20 | 25 | 12.44 | 20 | 20 | 6.00 | 15 | 20 | 1.11 | |
7.50045|$\mu$|m | |$n= 6-n= 8$| | 20 | 25 | 10.50 | 15 | 20 | 5.17 | 15 | 20 | 1.13 | |
8.75768|$\mu$|m | |$n= 7-n= 10$| | 20 | 25 | 10.66 | 15 | 20 | 5.66 | 15 | 20 | 1.63 | |
11.3056|$\mu$|m | |$n= 7-n= 9$| | 20 | 25 | 13.06 | 20 | 20 | 6.58 | 15 | 20 | 1.46 | |
12.3685|$\mu$|m | |$n= 6-n= 7$| | 20 | 25 | 15.35 | 20 | 20 | 7.46 | 15 | 20 | 1.35 | |
16.2047|$\mu$|m | |$n= 8-n= 10$| | 20 | 25 | 15.31 | 20 | 20 | 7.99 | 15 | 20 | 1.98 | |
19.0567|$\mu$|m | |$n= 7-n= 8$| | 20 | 25 | 17.86 | 20 | 20 | 8.81 | 15 | 20 | 1.60 | |
27.7958|$\mu$|m | |$n= 8-n= 9$| | 25 | 30 | 20.01 | 20 | 20 | 10.13 | 15 | 20 | 1.92 |
H i recombination lines corresponding to the decays of the first eight series (starting with Balmer, |$n=2$|) up to |$n=10$| that have been tested in our pure hydrogen plasma model at |$T=10^4$|K. The columns in the right contain the maximum resolved principal quantum number n at which the line intensity converge for less than 5 per cent and 1 per cent with respect to the models with maximum resolved levels |$n^\text{res} = n-5$| (convergence ratios start to be calculated at |$n=15$|). We show these at hydrogen densities of |$10^5\,\text{cm}^{-3} \le \boldsymbol {n}_\text{H} \le 10^7$|. For each density, the maximum percentage difference induced by changing the maximum resolved level from |$n = 70$| to |$n = 10$| is also shown (columns ‘Diff.’).
|$\lambda$| . | Transition . | comments . | Convergence at |$\mathbf {n}_\text{H}=10^5\text{cm}^{-3}$| . | Convergence at |$\mathbf {n}_\text{H}=10^6\text{cm}^{-3}$| . | Convergence at |$\mathbf {n}_\text{H}=10^7\text{cm}^{-3}$| . | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
. | . | . | n (|$<$|5 per cent) . | n (|$<$|1 per cent) . | Diff. (per cent) . | n (|$<$|5 per cent) . | n (|$<$|1 per cent) . | Diff. (per cent) . | n (|$<$|5 per cent) . | n (|$<$|1 per cent) . | Diff. (per cent) . |
1215.67 Å | |$1\, ^2S-2\, ^2P$| | Ly |$\alpha$| | 15 | 15 | 0.01 | 15 | 15 | 0.02 | 15 | 15 | 0.02 |
3797.90 Å | |$2\, ^2S-n= 10$| | 15 | 15 | 1.07 | 15 | 15 | 0.26 | 15 | 15 | 0.60 | |
3835.38 Å | |$2\, ^2S-n= 9$| | 15 | 15 | 1.11 | 15 | 15 | 0.44 | 15 | 15 | 0.24 | |
3889.05 Å | |$2\, ^2S-n= 8$| | 15 | 15 | 1.11 | 15 | 15 | 0.51 | 15 | 15 | 0.04 | |
3970.07 Å | |$2\, ^2S-n= 7$| | 15 | 15 | 1.06 | 15 | 15 | 0.52 | 15 | 15 | 0.05 | |
4101.73 Å | |$2\, ^2S-n= 6$| | 15 | 15 | 0.97 | 15 | 15 | 0.48 | 15 | 15 | 0.08 | |
4340.46 Å | |$2\, ^2S-n= 5$| | 15 | 15 | 0.78 | 15 | 15 | 0.39 | 15 | 15 | 0.08 | |
4861.32 Å | |$2\, ^2S-n= 4$| | H|$\beta$| | 15 | 15 | 0.30 | 15 | 15 | 0.15 | 15 | 15 | 0.03 |
6562.80 Å | |$2\, ^2S-n= 3$| | H|$\alpha$| | 15 | 20 | 1.44 | 15 | 15 | 0.68 | 15 | 15 | 0.13 |
9014.91 Å | |$n= 3-n= 10$| | 15 | 15 | 0.02 | 15 | 15 | 0.44 | 15 | 15 | 0.75 | |
9229.02 Å | |$n= 3-n= 9$| | 15 | 15 | 0.06 | 15 | 15 | 0.24 | 15 | 15 | 0.71 | |
9545.97Å | |$n= 3-n= 8$| | 15 | 15 | 0.23 | 15 | 15 | 0.19 | 15 | 15 | 0.23 | |
1.00494|$\mu$|m | |$n= 3-n= 7$| | 15 | 15 | 0.50 | 15 | 15 | 0.26 | 15 | 15 | 0.16 | |
1.09381|$\mu$|m | |$n= 3-n= 6$| | 15 | 15 | 1.00 | 15 | 15 | 0.48 | 15 | 15 | 0.16 | |
1.28181|$\mu$|m | |$n= 3-n= 5$| | 15 | 20 | 2.09 | 15 | 15 | 0.99 | 15 | 15 | 0.24 | |
1.73621|$\mu$|m | |$n= 4-n= 10$| | 15 | 20 | 1.80 | 15 | 20 | 1.04 | 15 | 15 | 0.93 | |
1.81741|$\mu$|m | |$n= 4-n= 9$| | 15 | 20 | 2.06 | 15 | 20 | 1.25 | 15 | 15 | 0.62 | |
1.87510|$\mu$|m | |$n= 3-n= 4$| | 15 | 25 | 5.46 | 15 | 20 | 2.62 | 15 | 15 | 0.51 | |
1.94456|$\mu$|m | |$n= 4-n= 8$| | 15 | 20 | 2.51 | 15 | 20 | 1.31 | 15 | 15 | 0.48 | |
2.16553|$\mu$|m | |$n= 4-n= 7$| | 15 | 20 | 3.30 | 15 | 20 | 1.61 | 15 | 15 | 0.45 | |
2.62515|$\mu$|m | |$n= 4-n= 6$| | 15 | 20 | 4.89 | 15 | 20 | 2.34 | 15 | 15 | 0.53 | |
3.03837|$\mu$|m | |$n= 5-n= 10$| | 15 | 20 | 4.14 | 15 | 20 | 2.53 | 15 | 20 | 1.13 | |
3.29609|$\mu$|m | |$n= 5-n= 9$| | 15 | 20 | 4.76 | 15 | 20 | 2.56 | 15 | 15 | 0.85 | |
3.73954|$\mu$|m | |$n= 5-n= 8$| | 15 | 25 | 5.78 | 15 | 20 | 2.89 | 15 | 15 | 0.77 | |
4.05115|$\mu$|m | |$n= 4-n= 5$| | 20 | 25 | 9.14 | 15 | 20 | 4.39 | 15 | 15 | 0.83 | |
4.65251|$\mu$|m | |$n= 5-n= 7$| | 20 | 25 | 7.74 | 15 | 20 | 3.76 | 15 | 15 | 0.83 | |
5.12726|$\mu$|m | |$n= 6-n= 10$| | 20 | 25 | 7.05 | 15 | 20 | 3.92 | 15 | 20 | 1.36 | |
5.90660|$\mu$|m | |$n= 6-n= 9$| | 20 | 25 | 8.29 | 15 | 20 | 4.26 | 15 | 20 | 1.13 | |
7.45782|$\mu$|m | |$n= 5-n= 6$| | 20 | 25 | 12.44 | 20 | 20 | 6.00 | 15 | 20 | 1.11 | |
7.50045|$\mu$|m | |$n= 6-n= 8$| | 20 | 25 | 10.50 | 15 | 20 | 5.17 | 15 | 20 | 1.13 | |
8.75768|$\mu$|m | |$n= 7-n= 10$| | 20 | 25 | 10.66 | 15 | 20 | 5.66 | 15 | 20 | 1.63 | |
11.3056|$\mu$|m | |$n= 7-n= 9$| | 20 | 25 | 13.06 | 20 | 20 | 6.58 | 15 | 20 | 1.46 | |
12.3685|$\mu$|m | |$n= 6-n= 7$| | 20 | 25 | 15.35 | 20 | 20 | 7.46 | 15 | 20 | 1.35 | |
16.2047|$\mu$|m | |$n= 8-n= 10$| | 20 | 25 | 15.31 | 20 | 20 | 7.99 | 15 | 20 | 1.98 | |
19.0567|$\mu$|m | |$n= 7-n= 8$| | 20 | 25 | 17.86 | 20 | 20 | 8.81 | 15 | 20 | 1.60 | |
27.7958|$\mu$|m | |$n= 8-n= 9$| | 25 | 30 | 20.01 | 20 | 20 | 10.13 | 15 | 20 | 1.92 |
|$\lambda$| . | Transition . | comments . | Convergence at |$\mathbf {n}_\text{H}=10^5\text{cm}^{-3}$| . | Convergence at |$\mathbf {n}_\text{H}=10^6\text{cm}^{-3}$| . | Convergence at |$\mathbf {n}_\text{H}=10^7\text{cm}^{-3}$| . | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
. | . | . | n (|$<$|5 per cent) . | n (|$<$|1 per cent) . | Diff. (per cent) . | n (|$<$|5 per cent) . | n (|$<$|1 per cent) . | Diff. (per cent) . | n (|$<$|5 per cent) . | n (|$<$|1 per cent) . | Diff. (per cent) . |
1215.67 Å | |$1\, ^2S-2\, ^2P$| | Ly |$\alpha$| | 15 | 15 | 0.01 | 15 | 15 | 0.02 | 15 | 15 | 0.02 |
3797.90 Å | |$2\, ^2S-n= 10$| | 15 | 15 | 1.07 | 15 | 15 | 0.26 | 15 | 15 | 0.60 | |
3835.38 Å | |$2\, ^2S-n= 9$| | 15 | 15 | 1.11 | 15 | 15 | 0.44 | 15 | 15 | 0.24 | |
3889.05 Å | |$2\, ^2S-n= 8$| | 15 | 15 | 1.11 | 15 | 15 | 0.51 | 15 | 15 | 0.04 | |
3970.07 Å | |$2\, ^2S-n= 7$| | 15 | 15 | 1.06 | 15 | 15 | 0.52 | 15 | 15 | 0.05 | |
4101.73 Å | |$2\, ^2S-n= 6$| | 15 | 15 | 0.97 | 15 | 15 | 0.48 | 15 | 15 | 0.08 | |
4340.46 Å | |$2\, ^2S-n= 5$| | 15 | 15 | 0.78 | 15 | 15 | 0.39 | 15 | 15 | 0.08 | |
4861.32 Å | |$2\, ^2S-n= 4$| | H|$\beta$| | 15 | 15 | 0.30 | 15 | 15 | 0.15 | 15 | 15 | 0.03 |
6562.80 Å | |$2\, ^2S-n= 3$| | H|$\alpha$| | 15 | 20 | 1.44 | 15 | 15 | 0.68 | 15 | 15 | 0.13 |
9014.91 Å | |$n= 3-n= 10$| | 15 | 15 | 0.02 | 15 | 15 | 0.44 | 15 | 15 | 0.75 | |
9229.02 Å | |$n= 3-n= 9$| | 15 | 15 | 0.06 | 15 | 15 | 0.24 | 15 | 15 | 0.71 | |
9545.97Å | |$n= 3-n= 8$| | 15 | 15 | 0.23 | 15 | 15 | 0.19 | 15 | 15 | 0.23 | |
1.00494|$\mu$|m | |$n= 3-n= 7$| | 15 | 15 | 0.50 | 15 | 15 | 0.26 | 15 | 15 | 0.16 | |
1.09381|$\mu$|m | |$n= 3-n= 6$| | 15 | 15 | 1.00 | 15 | 15 | 0.48 | 15 | 15 | 0.16 | |
1.28181|$\mu$|m | |$n= 3-n= 5$| | 15 | 20 | 2.09 | 15 | 15 | 0.99 | 15 | 15 | 0.24 | |
1.73621|$\mu$|m | |$n= 4-n= 10$| | 15 | 20 | 1.80 | 15 | 20 | 1.04 | 15 | 15 | 0.93 | |
1.81741|$\mu$|m | |$n= 4-n= 9$| | 15 | 20 | 2.06 | 15 | 20 | 1.25 | 15 | 15 | 0.62 | |
1.87510|$\mu$|m | |$n= 3-n= 4$| | 15 | 25 | 5.46 | 15 | 20 | 2.62 | 15 | 15 | 0.51 | |
1.94456|$\mu$|m | |$n= 4-n= 8$| | 15 | 20 | 2.51 | 15 | 20 | 1.31 | 15 | 15 | 0.48 | |
2.16553|$\mu$|m | |$n= 4-n= 7$| | 15 | 20 | 3.30 | 15 | 20 | 1.61 | 15 | 15 | 0.45 | |
2.62515|$\mu$|m | |$n= 4-n= 6$| | 15 | 20 | 4.89 | 15 | 20 | 2.34 | 15 | 15 | 0.53 | |
3.03837|$\mu$|m | |$n= 5-n= 10$| | 15 | 20 | 4.14 | 15 | 20 | 2.53 | 15 | 20 | 1.13 | |
3.29609|$\mu$|m | |$n= 5-n= 9$| | 15 | 20 | 4.76 | 15 | 20 | 2.56 | 15 | 15 | 0.85 | |
3.73954|$\mu$|m | |$n= 5-n= 8$| | 15 | 25 | 5.78 | 15 | 20 | 2.89 | 15 | 15 | 0.77 | |
4.05115|$\mu$|m | |$n= 4-n= 5$| | 20 | 25 | 9.14 | 15 | 20 | 4.39 | 15 | 15 | 0.83 | |
4.65251|$\mu$|m | |$n= 5-n= 7$| | 20 | 25 | 7.74 | 15 | 20 | 3.76 | 15 | 15 | 0.83 | |
5.12726|$\mu$|m | |$n= 6-n= 10$| | 20 | 25 | 7.05 | 15 | 20 | 3.92 | 15 | 20 | 1.36 | |
5.90660|$\mu$|m | |$n= 6-n= 9$| | 20 | 25 | 8.29 | 15 | 20 | 4.26 | 15 | 20 | 1.13 | |
7.45782|$\mu$|m | |$n= 5-n= 6$| | 20 | 25 | 12.44 | 20 | 20 | 6.00 | 15 | 20 | 1.11 | |
7.50045|$\mu$|m | |$n= 6-n= 8$| | 20 | 25 | 10.50 | 15 | 20 | 5.17 | 15 | 20 | 1.13 | |
8.75768|$\mu$|m | |$n= 7-n= 10$| | 20 | 25 | 10.66 | 15 | 20 | 5.66 | 15 | 20 | 1.63 | |
11.3056|$\mu$|m | |$n= 7-n= 9$| | 20 | 25 | 13.06 | 20 | 20 | 6.58 | 15 | 20 | 1.46 | |
12.3685|$\mu$|m | |$n= 6-n= 7$| | 20 | 25 | 15.35 | 20 | 20 | 7.46 | 15 | 20 | 1.35 | |
16.2047|$\mu$|m | |$n= 8-n= 10$| | 20 | 25 | 15.31 | 20 | 20 | 7.99 | 15 | 20 | 1.98 | |
19.0567|$\mu$|m | |$n= 7-n= 8$| | 20 | 25 | 17.86 | 20 | 20 | 8.81 | 15 | 20 | 1.60 | |
27.7958|$\mu$|m | |$n= 8-n= 9$| | 25 | 30 | 20.01 | 20 | 20 | 10.13 | 15 | 20 | 1.92 |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.