Table A2.

H i recombination lines corresponding to the decays of the first eight series (starting with Balmer, |$n=2$|⁠) up to |$n=10$| that have been tested in our pure hydrogen plasma model at |$T=10^4$|K. The columns in the right contain the maximum resolved principal quantum number n at which the line intensity converge for less than 5 per cent and 1 per cent with respect to the models with maximum resolved levels |$n^\text{res} = n-5$| (convergence ratios start to be calculated at |$n=15$|⁠). We show these at hydrogen densities of |$10^5\,\text{cm}^{-3} \le \boldsymbol {n}_\text{H} \le 10^7$|⁠. For each density, the maximum percentage difference induced by changing the maximum resolved level from |$n = 70$| to |$n = 10$| is also shown (columns ‘Diff.’).

|$\lambda$|TransitioncommentsConvergence at |$\mathbf {n}_\text{H}=10^5\text{cm}^{-3}$|Convergence at |$\mathbf {n}_\text{H}=10^6\text{cm}^{-3}$|Convergence at |$\mathbf {n}_\text{H}=10^7\text{cm}^{-3}$|
   n (⁠|$<$|5 per cent)n (⁠|$<$|1 per cent)Diff. (per cent)n (⁠|$<$|5 per cent)n (⁠|$<$|1 per cent)Diff. (per cent)n (⁠|$<$|5 per cent)n (⁠|$<$|1 per cent)Diff. (per cent)
1215.67 Å|$1\, ^2S-2\, ^2P$|Ly |$\alpha$|15150.0115150.0215150.02
3797.90 Å|$2\, ^2S-n= 10$| 15151.0715150.2615150.60
3835.38 Å|$2\, ^2S-n= 9$| 15151.1115150.4415150.24
3889.05 Å|$2\, ^2S-n= 8$| 15151.1115150.5115150.04
3970.07 Å|$2\, ^2S-n= 7$| 15151.0615150.5215150.05
4101.73 Å|$2\, ^2S-n= 6$| 15150.9715150.4815150.08
4340.46 Å|$2\, ^2S-n= 5$| 15150.7815150.3915150.08
4861.32 Å|$2\, ^2S-n= 4$|H|$\beta$|15150.3015150.1515150.03
6562.80 Å|$2\, ^2S-n= 3$|H|$\alpha$|15201.4415150.6815150.13
9014.91 Å|$n= 3-n= 10$| 15150.0215150.4415150.75
9229.02 Å|$n= 3-n= 9$| 15150.0615150.2415150.71
9545.97Å|$n= 3-n= 8$| 15150.2315150.1915150.23
1.00494|$\mu$|m|$n= 3-n= 7$| 15150.5015150.2615150.16
1.09381|$\mu$|m|$n= 3-n= 6$| 15151.0015150.4815150.16
1.28181|$\mu$|m|$n= 3-n= 5$| 15202.0915150.9915150.24
1.73621|$\mu$|m|$n= 4-n= 10$| 15201.8015201.0415150.93
1.81741|$\mu$|m|$n= 4-n= 9$| 15202.0615201.2515150.62
1.87510|$\mu$|m|$n= 3-n= 4$| 15255.4615202.6215150.51
1.94456|$\mu$|m|$n= 4-n= 8$| 15202.5115201.3115150.48
2.16553|$\mu$|m|$n= 4-n= 7$| 15203.3015201.6115150.45
2.62515|$\mu$|m|$n= 4-n= 6$| 15204.8915202.3415150.53
3.03837|$\mu$|m|$n= 5-n= 10$| 15204.1415202.5315201.13
3.29609|$\mu$|m|$n= 5-n= 9$| 15204.7615202.5615150.85
3.73954|$\mu$|m|$n= 5-n= 8$| 15255.7815202.8915150.77
4.05115|$\mu$|m|$n= 4-n= 5$| 20259.1415204.3915150.83
4.65251|$\mu$|m|$n= 5-n= 7$| 20257.7415203.7615150.83
5.12726|$\mu$|m|$n= 6-n= 10$| 20257.0515203.9215201.36
5.90660|$\mu$|m|$n= 6-n= 9$| 20258.2915204.2615201.13
7.45782|$\mu$|m|$n= 5-n= 6$| 202512.4420206.0015201.11
7.50045|$\mu$|m|$n= 6-n= 8$| 202510.5015205.1715201.13
8.75768|$\mu$|m|$n= 7-n= 10$| 202510.6615205.6615201.63
11.3056|$\mu$|m|$n= 7-n= 9$| 202513.0620206.5815201.46
12.3685|$\mu$|m|$n= 6-n= 7$| 202515.3520207.4615201.35
16.2047|$\mu$|m|$n= 8-n= 10$| 202515.3120207.9915201.98
19.0567|$\mu$|m|$n= 7-n= 8$| 202517.8620208.8115201.60
27.7958|$\mu$|m|$n= 8-n= 9$| 253020.01202010.1315201.92
|$\lambda$|TransitioncommentsConvergence at |$\mathbf {n}_\text{H}=10^5\text{cm}^{-3}$|Convergence at |$\mathbf {n}_\text{H}=10^6\text{cm}^{-3}$|Convergence at |$\mathbf {n}_\text{H}=10^7\text{cm}^{-3}$|
   n (⁠|$<$|5 per cent)n (⁠|$<$|1 per cent)Diff. (per cent)n (⁠|$<$|5 per cent)n (⁠|$<$|1 per cent)Diff. (per cent)n (⁠|$<$|5 per cent)n (⁠|$<$|1 per cent)Diff. (per cent)
1215.67 Å|$1\, ^2S-2\, ^2P$|Ly |$\alpha$|15150.0115150.0215150.02
3797.90 Å|$2\, ^2S-n= 10$| 15151.0715150.2615150.60
3835.38 Å|$2\, ^2S-n= 9$| 15151.1115150.4415150.24
3889.05 Å|$2\, ^2S-n= 8$| 15151.1115150.5115150.04
3970.07 Å|$2\, ^2S-n= 7$| 15151.0615150.5215150.05
4101.73 Å|$2\, ^2S-n= 6$| 15150.9715150.4815150.08
4340.46 Å|$2\, ^2S-n= 5$| 15150.7815150.3915150.08
4861.32 Å|$2\, ^2S-n= 4$|H|$\beta$|15150.3015150.1515150.03
6562.80 Å|$2\, ^2S-n= 3$|H|$\alpha$|15201.4415150.6815150.13
9014.91 Å|$n= 3-n= 10$| 15150.0215150.4415150.75
9229.02 Å|$n= 3-n= 9$| 15150.0615150.2415150.71
9545.97Å|$n= 3-n= 8$| 15150.2315150.1915150.23
1.00494|$\mu$|m|$n= 3-n= 7$| 15150.5015150.2615150.16
1.09381|$\mu$|m|$n= 3-n= 6$| 15151.0015150.4815150.16
1.28181|$\mu$|m|$n= 3-n= 5$| 15202.0915150.9915150.24
1.73621|$\mu$|m|$n= 4-n= 10$| 15201.8015201.0415150.93
1.81741|$\mu$|m|$n= 4-n= 9$| 15202.0615201.2515150.62
1.87510|$\mu$|m|$n= 3-n= 4$| 15255.4615202.6215150.51
1.94456|$\mu$|m|$n= 4-n= 8$| 15202.5115201.3115150.48
2.16553|$\mu$|m|$n= 4-n= 7$| 15203.3015201.6115150.45
2.62515|$\mu$|m|$n= 4-n= 6$| 15204.8915202.3415150.53
3.03837|$\mu$|m|$n= 5-n= 10$| 15204.1415202.5315201.13
3.29609|$\mu$|m|$n= 5-n= 9$| 15204.7615202.5615150.85
3.73954|$\mu$|m|$n= 5-n= 8$| 15255.7815202.8915150.77
4.05115|$\mu$|m|$n= 4-n= 5$| 20259.1415204.3915150.83
4.65251|$\mu$|m|$n= 5-n= 7$| 20257.7415203.7615150.83
5.12726|$\mu$|m|$n= 6-n= 10$| 20257.0515203.9215201.36
5.90660|$\mu$|m|$n= 6-n= 9$| 20258.2915204.2615201.13
7.45782|$\mu$|m|$n= 5-n= 6$| 202512.4420206.0015201.11
7.50045|$\mu$|m|$n= 6-n= 8$| 202510.5015205.1715201.13
8.75768|$\mu$|m|$n= 7-n= 10$| 202510.6615205.6615201.63
11.3056|$\mu$|m|$n= 7-n= 9$| 202513.0620206.5815201.46
12.3685|$\mu$|m|$n= 6-n= 7$| 202515.3520207.4615201.35
16.2047|$\mu$|m|$n= 8-n= 10$| 202515.3120207.9915201.98
19.0567|$\mu$|m|$n= 7-n= 8$| 202517.8620208.8115201.60
27.7958|$\mu$|m|$n= 8-n= 9$| 253020.01202010.1315201.92
Table A2.

H i recombination lines corresponding to the decays of the first eight series (starting with Balmer, |$n=2$|⁠) up to |$n=10$| that have been tested in our pure hydrogen plasma model at |$T=10^4$|K. The columns in the right contain the maximum resolved principal quantum number n at which the line intensity converge for less than 5 per cent and 1 per cent with respect to the models with maximum resolved levels |$n^\text{res} = n-5$| (convergence ratios start to be calculated at |$n=15$|⁠). We show these at hydrogen densities of |$10^5\,\text{cm}^{-3} \le \boldsymbol {n}_\text{H} \le 10^7$|⁠. For each density, the maximum percentage difference induced by changing the maximum resolved level from |$n = 70$| to |$n = 10$| is also shown (columns ‘Diff.’).

|$\lambda$|TransitioncommentsConvergence at |$\mathbf {n}_\text{H}=10^5\text{cm}^{-3}$|Convergence at |$\mathbf {n}_\text{H}=10^6\text{cm}^{-3}$|Convergence at |$\mathbf {n}_\text{H}=10^7\text{cm}^{-3}$|
   n (⁠|$<$|5 per cent)n (⁠|$<$|1 per cent)Diff. (per cent)n (⁠|$<$|5 per cent)n (⁠|$<$|1 per cent)Diff. (per cent)n (⁠|$<$|5 per cent)n (⁠|$<$|1 per cent)Diff. (per cent)
1215.67 Å|$1\, ^2S-2\, ^2P$|Ly |$\alpha$|15150.0115150.0215150.02
3797.90 Å|$2\, ^2S-n= 10$| 15151.0715150.2615150.60
3835.38 Å|$2\, ^2S-n= 9$| 15151.1115150.4415150.24
3889.05 Å|$2\, ^2S-n= 8$| 15151.1115150.5115150.04
3970.07 Å|$2\, ^2S-n= 7$| 15151.0615150.5215150.05
4101.73 Å|$2\, ^2S-n= 6$| 15150.9715150.4815150.08
4340.46 Å|$2\, ^2S-n= 5$| 15150.7815150.3915150.08
4861.32 Å|$2\, ^2S-n= 4$|H|$\beta$|15150.3015150.1515150.03
6562.80 Å|$2\, ^2S-n= 3$|H|$\alpha$|15201.4415150.6815150.13
9014.91 Å|$n= 3-n= 10$| 15150.0215150.4415150.75
9229.02 Å|$n= 3-n= 9$| 15150.0615150.2415150.71
9545.97Å|$n= 3-n= 8$| 15150.2315150.1915150.23
1.00494|$\mu$|m|$n= 3-n= 7$| 15150.5015150.2615150.16
1.09381|$\mu$|m|$n= 3-n= 6$| 15151.0015150.4815150.16
1.28181|$\mu$|m|$n= 3-n= 5$| 15202.0915150.9915150.24
1.73621|$\mu$|m|$n= 4-n= 10$| 15201.8015201.0415150.93
1.81741|$\mu$|m|$n= 4-n= 9$| 15202.0615201.2515150.62
1.87510|$\mu$|m|$n= 3-n= 4$| 15255.4615202.6215150.51
1.94456|$\mu$|m|$n= 4-n= 8$| 15202.5115201.3115150.48
2.16553|$\mu$|m|$n= 4-n= 7$| 15203.3015201.6115150.45
2.62515|$\mu$|m|$n= 4-n= 6$| 15204.8915202.3415150.53
3.03837|$\mu$|m|$n= 5-n= 10$| 15204.1415202.5315201.13
3.29609|$\mu$|m|$n= 5-n= 9$| 15204.7615202.5615150.85
3.73954|$\mu$|m|$n= 5-n= 8$| 15255.7815202.8915150.77
4.05115|$\mu$|m|$n= 4-n= 5$| 20259.1415204.3915150.83
4.65251|$\mu$|m|$n= 5-n= 7$| 20257.7415203.7615150.83
5.12726|$\mu$|m|$n= 6-n= 10$| 20257.0515203.9215201.36
5.90660|$\mu$|m|$n= 6-n= 9$| 20258.2915204.2615201.13
7.45782|$\mu$|m|$n= 5-n= 6$| 202512.4420206.0015201.11
7.50045|$\mu$|m|$n= 6-n= 8$| 202510.5015205.1715201.13
8.75768|$\mu$|m|$n= 7-n= 10$| 202510.6615205.6615201.63
11.3056|$\mu$|m|$n= 7-n= 9$| 202513.0620206.5815201.46
12.3685|$\mu$|m|$n= 6-n= 7$| 202515.3520207.4615201.35
16.2047|$\mu$|m|$n= 8-n= 10$| 202515.3120207.9915201.98
19.0567|$\mu$|m|$n= 7-n= 8$| 202517.8620208.8115201.60
27.7958|$\mu$|m|$n= 8-n= 9$| 253020.01202010.1315201.92
|$\lambda$|TransitioncommentsConvergence at |$\mathbf {n}_\text{H}=10^5\text{cm}^{-3}$|Convergence at |$\mathbf {n}_\text{H}=10^6\text{cm}^{-3}$|Convergence at |$\mathbf {n}_\text{H}=10^7\text{cm}^{-3}$|
   n (⁠|$<$|5 per cent)n (⁠|$<$|1 per cent)Diff. (per cent)n (⁠|$<$|5 per cent)n (⁠|$<$|1 per cent)Diff. (per cent)n (⁠|$<$|5 per cent)n (⁠|$<$|1 per cent)Diff. (per cent)
1215.67 Å|$1\, ^2S-2\, ^2P$|Ly |$\alpha$|15150.0115150.0215150.02
3797.90 Å|$2\, ^2S-n= 10$| 15151.0715150.2615150.60
3835.38 Å|$2\, ^2S-n= 9$| 15151.1115150.4415150.24
3889.05 Å|$2\, ^2S-n= 8$| 15151.1115150.5115150.04
3970.07 Å|$2\, ^2S-n= 7$| 15151.0615150.5215150.05
4101.73 Å|$2\, ^2S-n= 6$| 15150.9715150.4815150.08
4340.46 Å|$2\, ^2S-n= 5$| 15150.7815150.3915150.08
4861.32 Å|$2\, ^2S-n= 4$|H|$\beta$|15150.3015150.1515150.03
6562.80 Å|$2\, ^2S-n= 3$|H|$\alpha$|15201.4415150.6815150.13
9014.91 Å|$n= 3-n= 10$| 15150.0215150.4415150.75
9229.02 Å|$n= 3-n= 9$| 15150.0615150.2415150.71
9545.97Å|$n= 3-n= 8$| 15150.2315150.1915150.23
1.00494|$\mu$|m|$n= 3-n= 7$| 15150.5015150.2615150.16
1.09381|$\mu$|m|$n= 3-n= 6$| 15151.0015150.4815150.16
1.28181|$\mu$|m|$n= 3-n= 5$| 15202.0915150.9915150.24
1.73621|$\mu$|m|$n= 4-n= 10$| 15201.8015201.0415150.93
1.81741|$\mu$|m|$n= 4-n= 9$| 15202.0615201.2515150.62
1.87510|$\mu$|m|$n= 3-n= 4$| 15255.4615202.6215150.51
1.94456|$\mu$|m|$n= 4-n= 8$| 15202.5115201.3115150.48
2.16553|$\mu$|m|$n= 4-n= 7$| 15203.3015201.6115150.45
2.62515|$\mu$|m|$n= 4-n= 6$| 15204.8915202.3415150.53
3.03837|$\mu$|m|$n= 5-n= 10$| 15204.1415202.5315201.13
3.29609|$\mu$|m|$n= 5-n= 9$| 15204.7615202.5615150.85
3.73954|$\mu$|m|$n= 5-n= 8$| 15255.7815202.8915150.77
4.05115|$\mu$|m|$n= 4-n= 5$| 20259.1415204.3915150.83
4.65251|$\mu$|m|$n= 5-n= 7$| 20257.7415203.7615150.83
5.12726|$\mu$|m|$n= 6-n= 10$| 20257.0515203.9215201.36
5.90660|$\mu$|m|$n= 6-n= 9$| 20258.2915204.2615201.13
7.45782|$\mu$|m|$n= 5-n= 6$| 202512.4420206.0015201.11
7.50045|$\mu$|m|$n= 6-n= 8$| 202510.5015205.1715201.13
8.75768|$\mu$|m|$n= 7-n= 10$| 202510.6615205.6615201.63
11.3056|$\mu$|m|$n= 7-n= 9$| 202513.0620206.5815201.46
12.3685|$\mu$|m|$n= 6-n= 7$| 202515.3520207.4615201.35
16.2047|$\mu$|m|$n= 8-n= 10$| 202515.3120207.9915201.98
19.0567|$\mu$|m|$n= 7-n= 8$| 202517.8620208.8115201.60
27.7958|$\mu$|m|$n= 8-n= 9$| 253020.01202010.1315201.92
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close