Table 1.

H i recombination lines corresponding to the decays of the first eight series (starting with Balmer, |$n=2$|⁠) up to |$n=10$| that have been tested in our pure hydrogen plasma model at |$T=10^4$| K. The columns in the right contain the maximum resolved principal quantum number n at which the line intensity converge for less than 5 per cent and 1 per cent with respect to the models with maximum resolved levels |$n^\text{res} = n-5$| (convergence ratios start to be calculated at |$n=15$|⁠). We show these at two relevant hydrogen densities of |$\boldsymbol {n}_\text{H} = 1\,\text{cm}^{-3}$| (corresponding to the interstellar medium) and |$\boldsymbol {n}_\text{H} = 10^4\,\text{cm}^{-3}$| (H ii regions). For each density, the maximum percentage difference induced by changing the maximum resolved level from |$n = 70$| to |$n = 10$| is also shown (columns ‘Diff.’).

|$\lambda$|transitioncommentsConvergence at |$\mathbf {n}_\text{H}=1\text{cm}^{-3}$|Convergence at |$\mathbf {n}_\text{H}=10^4\text{cm}^{-3}$|
   n (⁠|$<$|5  per cent)n (⁠|$<$|1  per cent)Diff. (per cent)n (⁠|$<$|5  per cent)n (⁠|$<$|1  per cent)Diff. (per cent)
1215.67 Å|$1\, ^2S-2\, ^2P$|Ly |$\alpha$|15150.9015150.21
3797.90 Å|$2\, ^2S-n= 10$| 15151.8115151.43
3835.38 Å|$2\, ^2S-n= 9$| 15151.8415151.45
3889.05 Å|$2\, ^2S-n= 8$| 15151.8215151.43
3970.07 Å|$2\, ^2S-n= 7$| 15151.7815151.39
4101.73 Å|$2\, ^2S-n= 6$| 15151.6415151.28
4340.46 Å|$2\, ^2S-n= 5$| 15151.3215151.03
4861.32 Å|$2\, ^2S-n= 4$|H|$\beta$|15150.4615150.47
6562.80 Å |$2\, ^2S-n= 3$|H|$\alpha$|15202.7515202.02
9014.91 Å|$n= 3-n= 10$| 15150.1015150.10
9229.02 Å|$n= 3-n= 9$| 15150.1615150.10
9545.97 Å|$n= 3-n= 8$| 15150.5115150.37
1.00494 |$\mu$|m|$n= 3-n= 7$| 15151.0515150.77
1.09381 |$\mu$|m|$n= 3-n= 6$| 15201.9915201.48
1.28181|$\mu$|m|$n= 3-n= 5$| 15204.0615203.00
1.73621 |$\mu$|m|$n= 4-n= 10$| 15203.2315202.41
1.81741 |$\mu$|m|$n= 4-n= 9$| 15203.8715202.89
1.87510|$\mu$|m|$n= 3-n= 4$| 153010.3015257.61
1.94456|$\mu$|m|$n= 4-n= 8$| 15254.7915203.57
2.16553 |$\mu$|m|$n= 4-n= 7$| 15256.3315254.70
2.62515 |$\mu$|m|$n= 4-n= 6$| 15309.4015256.92
3.03837 |$\mu$|m|$n= 5-n= 10$| 15257.7115255.72
3.29609 |$\mu$|m|$n= 5-n= 9$| 15259.0315256.69
3.73954 |$\mu$|m|$n= 5-n= 8$| 203011.1020258.69
4.05115 |$\mu$|m|$n= 4-n= 5$| 203517.16203012.65
4.65251 |$\mu$|m|$n= 5-n= 7$| 203514.92203010.89
5.12726 |$\mu$|m|$n= 6-n= 10$| 203013.8920259.82
5.90660 |$\mu$|m|$n= 6-n= 9$| 203515.93203011.62
7.45782 |$\mu$|m|$n= 5-n= 6$| 204023.20203017.11
7.50045 |$\mu$|m|$n= 6-n= 8$| 203520.22203014.66
8.75768 |$\mu$|m|$n= 7-n= 10$| 203520.53203014.83
11.3056 |$\mu$|m|$n= 7-n= 9$| 204025.06203018.08
12.3685 |$\mu$|m|$n= 6-n= 7$| 254528.31253520.94
16.2047 |$\mu$|m|$n= 8-n= 10$| 254529.22253521.01
19.0567 |$\mu$|m|$n= 7-n= 8$| 255032.43253524.16
27.7958 |$\mu$|m|$n= 8-n= 9$| 255035.60253526.80
|$\lambda$|transitioncommentsConvergence at |$\mathbf {n}_\text{H}=1\text{cm}^{-3}$|Convergence at |$\mathbf {n}_\text{H}=10^4\text{cm}^{-3}$|
   n (⁠|$<$|5  per cent)n (⁠|$<$|1  per cent)Diff. (per cent)n (⁠|$<$|5  per cent)n (⁠|$<$|1  per cent)Diff. (per cent)
1215.67 Å|$1\, ^2S-2\, ^2P$|Ly |$\alpha$|15150.9015150.21
3797.90 Å|$2\, ^2S-n= 10$| 15151.8115151.43
3835.38 Å|$2\, ^2S-n= 9$| 15151.8415151.45
3889.05 Å|$2\, ^2S-n= 8$| 15151.8215151.43
3970.07 Å|$2\, ^2S-n= 7$| 15151.7815151.39
4101.73 Å|$2\, ^2S-n= 6$| 15151.6415151.28
4340.46 Å|$2\, ^2S-n= 5$| 15151.3215151.03
4861.32 Å|$2\, ^2S-n= 4$|H|$\beta$|15150.4615150.47
6562.80 Å |$2\, ^2S-n= 3$|H|$\alpha$|15202.7515202.02
9014.91 Å|$n= 3-n= 10$| 15150.1015150.10
9229.02 Å|$n= 3-n= 9$| 15150.1615150.10
9545.97 Å|$n= 3-n= 8$| 15150.5115150.37
1.00494 |$\mu$|m|$n= 3-n= 7$| 15151.0515150.77
1.09381 |$\mu$|m|$n= 3-n= 6$| 15201.9915201.48
1.28181|$\mu$|m|$n= 3-n= 5$| 15204.0615203.00
1.73621 |$\mu$|m|$n= 4-n= 10$| 15203.2315202.41
1.81741 |$\mu$|m|$n= 4-n= 9$| 15203.8715202.89
1.87510|$\mu$|m|$n= 3-n= 4$| 153010.3015257.61
1.94456|$\mu$|m|$n= 4-n= 8$| 15254.7915203.57
2.16553 |$\mu$|m|$n= 4-n= 7$| 15256.3315254.70
2.62515 |$\mu$|m|$n= 4-n= 6$| 15309.4015256.92
3.03837 |$\mu$|m|$n= 5-n= 10$| 15257.7115255.72
3.29609 |$\mu$|m|$n= 5-n= 9$| 15259.0315256.69
3.73954 |$\mu$|m|$n= 5-n= 8$| 203011.1020258.69
4.05115 |$\mu$|m|$n= 4-n= 5$| 203517.16203012.65
4.65251 |$\mu$|m|$n= 5-n= 7$| 203514.92203010.89
5.12726 |$\mu$|m|$n= 6-n= 10$| 203013.8920259.82
5.90660 |$\mu$|m|$n= 6-n= 9$| 203515.93203011.62
7.45782 |$\mu$|m|$n= 5-n= 6$| 204023.20203017.11
7.50045 |$\mu$|m|$n= 6-n= 8$| 203520.22203014.66
8.75768 |$\mu$|m|$n= 7-n= 10$| 203520.53203014.83
11.3056 |$\mu$|m|$n= 7-n= 9$| 204025.06203018.08
12.3685 |$\mu$|m|$n= 6-n= 7$| 254528.31253520.94
16.2047 |$\mu$|m|$n= 8-n= 10$| 254529.22253521.01
19.0567 |$\mu$|m|$n= 7-n= 8$| 255032.43253524.16
27.7958 |$\mu$|m|$n= 8-n= 9$| 255035.60253526.80
Table 1.

H i recombination lines corresponding to the decays of the first eight series (starting with Balmer, |$n=2$|⁠) up to |$n=10$| that have been tested in our pure hydrogen plasma model at |$T=10^4$| K. The columns in the right contain the maximum resolved principal quantum number n at which the line intensity converge for less than 5 per cent and 1 per cent with respect to the models with maximum resolved levels |$n^\text{res} = n-5$| (convergence ratios start to be calculated at |$n=15$|⁠). We show these at two relevant hydrogen densities of |$\boldsymbol {n}_\text{H} = 1\,\text{cm}^{-3}$| (corresponding to the interstellar medium) and |$\boldsymbol {n}_\text{H} = 10^4\,\text{cm}^{-3}$| (H ii regions). For each density, the maximum percentage difference induced by changing the maximum resolved level from |$n = 70$| to |$n = 10$| is also shown (columns ‘Diff.’).

|$\lambda$|transitioncommentsConvergence at |$\mathbf {n}_\text{H}=1\text{cm}^{-3}$|Convergence at |$\mathbf {n}_\text{H}=10^4\text{cm}^{-3}$|
   n (⁠|$<$|5  per cent)n (⁠|$<$|1  per cent)Diff. (per cent)n (⁠|$<$|5  per cent)n (⁠|$<$|1  per cent)Diff. (per cent)
1215.67 Å|$1\, ^2S-2\, ^2P$|Ly |$\alpha$|15150.9015150.21
3797.90 Å|$2\, ^2S-n= 10$| 15151.8115151.43
3835.38 Å|$2\, ^2S-n= 9$| 15151.8415151.45
3889.05 Å|$2\, ^2S-n= 8$| 15151.8215151.43
3970.07 Å|$2\, ^2S-n= 7$| 15151.7815151.39
4101.73 Å|$2\, ^2S-n= 6$| 15151.6415151.28
4340.46 Å|$2\, ^2S-n= 5$| 15151.3215151.03
4861.32 Å|$2\, ^2S-n= 4$|H|$\beta$|15150.4615150.47
6562.80 Å |$2\, ^2S-n= 3$|H|$\alpha$|15202.7515202.02
9014.91 Å|$n= 3-n= 10$| 15150.1015150.10
9229.02 Å|$n= 3-n= 9$| 15150.1615150.10
9545.97 Å|$n= 3-n= 8$| 15150.5115150.37
1.00494 |$\mu$|m|$n= 3-n= 7$| 15151.0515150.77
1.09381 |$\mu$|m|$n= 3-n= 6$| 15201.9915201.48
1.28181|$\mu$|m|$n= 3-n= 5$| 15204.0615203.00
1.73621 |$\mu$|m|$n= 4-n= 10$| 15203.2315202.41
1.81741 |$\mu$|m|$n= 4-n= 9$| 15203.8715202.89
1.87510|$\mu$|m|$n= 3-n= 4$| 153010.3015257.61
1.94456|$\mu$|m|$n= 4-n= 8$| 15254.7915203.57
2.16553 |$\mu$|m|$n= 4-n= 7$| 15256.3315254.70
2.62515 |$\mu$|m|$n= 4-n= 6$| 15309.4015256.92
3.03837 |$\mu$|m|$n= 5-n= 10$| 15257.7115255.72
3.29609 |$\mu$|m|$n= 5-n= 9$| 15259.0315256.69
3.73954 |$\mu$|m|$n= 5-n= 8$| 203011.1020258.69
4.05115 |$\mu$|m|$n= 4-n= 5$| 203517.16203012.65
4.65251 |$\mu$|m|$n= 5-n= 7$| 203514.92203010.89
5.12726 |$\mu$|m|$n= 6-n= 10$| 203013.8920259.82
5.90660 |$\mu$|m|$n= 6-n= 9$| 203515.93203011.62
7.45782 |$\mu$|m|$n= 5-n= 6$| 204023.20203017.11
7.50045 |$\mu$|m|$n= 6-n= 8$| 203520.22203014.66
8.75768 |$\mu$|m|$n= 7-n= 10$| 203520.53203014.83
11.3056 |$\mu$|m|$n= 7-n= 9$| 204025.06203018.08
12.3685 |$\mu$|m|$n= 6-n= 7$| 254528.31253520.94
16.2047 |$\mu$|m|$n= 8-n= 10$| 254529.22253521.01
19.0567 |$\mu$|m|$n= 7-n= 8$| 255032.43253524.16
27.7958 |$\mu$|m|$n= 8-n= 9$| 255035.60253526.80
|$\lambda$|transitioncommentsConvergence at |$\mathbf {n}_\text{H}=1\text{cm}^{-3}$|Convergence at |$\mathbf {n}_\text{H}=10^4\text{cm}^{-3}$|
   n (⁠|$<$|5  per cent)n (⁠|$<$|1  per cent)Diff. (per cent)n (⁠|$<$|5  per cent)n (⁠|$<$|1  per cent)Diff. (per cent)
1215.67 Å|$1\, ^2S-2\, ^2P$|Ly |$\alpha$|15150.9015150.21
3797.90 Å|$2\, ^2S-n= 10$| 15151.8115151.43
3835.38 Å|$2\, ^2S-n= 9$| 15151.8415151.45
3889.05 Å|$2\, ^2S-n= 8$| 15151.8215151.43
3970.07 Å|$2\, ^2S-n= 7$| 15151.7815151.39
4101.73 Å|$2\, ^2S-n= 6$| 15151.6415151.28
4340.46 Å|$2\, ^2S-n= 5$| 15151.3215151.03
4861.32 Å|$2\, ^2S-n= 4$|H|$\beta$|15150.4615150.47
6562.80 Å |$2\, ^2S-n= 3$|H|$\alpha$|15202.7515202.02
9014.91 Å|$n= 3-n= 10$| 15150.1015150.10
9229.02 Å|$n= 3-n= 9$| 15150.1615150.10
9545.97 Å|$n= 3-n= 8$| 15150.5115150.37
1.00494 |$\mu$|m|$n= 3-n= 7$| 15151.0515150.77
1.09381 |$\mu$|m|$n= 3-n= 6$| 15201.9915201.48
1.28181|$\mu$|m|$n= 3-n= 5$| 15204.0615203.00
1.73621 |$\mu$|m|$n= 4-n= 10$| 15203.2315202.41
1.81741 |$\mu$|m|$n= 4-n= 9$| 15203.8715202.89
1.87510|$\mu$|m|$n= 3-n= 4$| 153010.3015257.61
1.94456|$\mu$|m|$n= 4-n= 8$| 15254.7915203.57
2.16553 |$\mu$|m|$n= 4-n= 7$| 15256.3315254.70
2.62515 |$\mu$|m|$n= 4-n= 6$| 15309.4015256.92
3.03837 |$\mu$|m|$n= 5-n= 10$| 15257.7115255.72
3.29609 |$\mu$|m|$n= 5-n= 9$| 15259.0315256.69
3.73954 |$\mu$|m|$n= 5-n= 8$| 203011.1020258.69
4.05115 |$\mu$|m|$n= 4-n= 5$| 203517.16203012.65
4.65251 |$\mu$|m|$n= 5-n= 7$| 203514.92203010.89
5.12726 |$\mu$|m|$n= 6-n= 10$| 203013.8920259.82
5.90660 |$\mu$|m|$n= 6-n= 9$| 203515.93203011.62
7.45782 |$\mu$|m|$n= 5-n= 6$| 204023.20203017.11
7.50045 |$\mu$|m|$n= 6-n= 8$| 203520.22203014.66
8.75768 |$\mu$|m|$n= 7-n= 10$| 203520.53203014.83
11.3056 |$\mu$|m|$n= 7-n= 9$| 204025.06203018.08
12.3685 |$\mu$|m|$n= 6-n= 7$| 254528.31253520.94
16.2047 |$\mu$|m|$n= 8-n= 10$| 254529.22253521.01
19.0567 |$\mu$|m|$n= 7-n= 8$| 255032.43253524.16
27.7958 |$\mu$|m|$n= 8-n= 9$| 255035.60253526.80
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close