Table 1.

Studies on the use of ML algorithms in exoplanet spectra. We describe the purpose and application of the algorithms used in each study. Additionally, we list the exoplanet regimes each algorithm focuses on and indicate whether they were trained or tested with C/O ratios plus metallicity (represented in the column C/O), or the most common free chemistry molecules.

ReferenceML method(s)TargetsC/OH|$_2$|OCO|$_2$|COCH|$_4$|NH|$_3$|HCNO|$_3$|
Gebhard et al. (2024)Convolutional neural networks and multilayer perceptrons (regression)Hot Jupiters and Earth-like planets        
Ardévol Martínez et al. (2024)Sequential neural posterior estimation with normalizing flows (regression)Wide range of planets, brown dwarfs        
Forestano et al. (2023)Local outlier factor, one-class support vector machine (unsupervised machine learning, outlier detection)Hot Jupiters        
Vasist et al. (2023)Neural posterior estimation with normalizing flows (regression)Gas giants        
Ardévol Martínez et al. (2022)Convolutional neural networks (regression)Gas giants        
Himes et al. (2022)Convolutional neural networks (regression)Hot Jupiters        
Matchev, Matcheva & Roman (2022a)k-means, PCA and ISOMAP (Unsupervised)Hot Jupiters        
Matchev, Matcheva & Roman (2022b)Symbolic regressionHot Jupiters        
Munsaket et al. (2021)Random forest (supervised ML, regression)Hot Jupiters        
Yip et al. (2021)Multilayer perceptrons, convolutional neural networks and long short-term memory networks (regression)Wide range of planets        
Guzmán-Mesa et al. (2020)Random forest (regression)Warm Neptunes        
Hayes et al. (2020)K-means, principal component analysis (unsupervised classification)Jupiter-like planets        
Nixon & Madhusudhan (2020)Random forest (regression)Hot Jupiters        
Cobb et al. (2019)Bayesian neural network (regression)Hot Jupiters        
Soboczenski et al. (2018)Convolutional neural networks with Monte Carlo dropout (regression)Rocky terrestrial exoplanets        
Marquez-Neila et al. (2018)Random forest (regression)Hot Jupiters        
Zingales & Waldmann (2018)Generative adversarial networks (regression)Hot Jupiters        
Waldmann (2016)Deep-belief networks (classification)Wide range of planets        
ReferenceML method(s)TargetsC/OH|$_2$|OCO|$_2$|COCH|$_4$|NH|$_3$|HCNO|$_3$|
Gebhard et al. (2024)Convolutional neural networks and multilayer perceptrons (regression)Hot Jupiters and Earth-like planets        
Ardévol Martínez et al. (2024)Sequential neural posterior estimation with normalizing flows (regression)Wide range of planets, brown dwarfs        
Forestano et al. (2023)Local outlier factor, one-class support vector machine (unsupervised machine learning, outlier detection)Hot Jupiters        
Vasist et al. (2023)Neural posterior estimation with normalizing flows (regression)Gas giants        
Ardévol Martínez et al. (2022)Convolutional neural networks (regression)Gas giants        
Himes et al. (2022)Convolutional neural networks (regression)Hot Jupiters        
Matchev, Matcheva & Roman (2022a)k-means, PCA and ISOMAP (Unsupervised)Hot Jupiters        
Matchev, Matcheva & Roman (2022b)Symbolic regressionHot Jupiters        
Munsaket et al. (2021)Random forest (supervised ML, regression)Hot Jupiters        
Yip et al. (2021)Multilayer perceptrons, convolutional neural networks and long short-term memory networks (regression)Wide range of planets        
Guzmán-Mesa et al. (2020)Random forest (regression)Warm Neptunes        
Hayes et al. (2020)K-means, principal component analysis (unsupervised classification)Jupiter-like planets        
Nixon & Madhusudhan (2020)Random forest (regression)Hot Jupiters        
Cobb et al. (2019)Bayesian neural network (regression)Hot Jupiters        
Soboczenski et al. (2018)Convolutional neural networks with Monte Carlo dropout (regression)Rocky terrestrial exoplanets        
Marquez-Neila et al. (2018)Random forest (regression)Hot Jupiters        
Zingales & Waldmann (2018)Generative adversarial networks (regression)Hot Jupiters        
Waldmann (2016)Deep-belief networks (classification)Wide range of planets        
Table 1.

Studies on the use of ML algorithms in exoplanet spectra. We describe the purpose and application of the algorithms used in each study. Additionally, we list the exoplanet regimes each algorithm focuses on and indicate whether they were trained or tested with C/O ratios plus metallicity (represented in the column C/O), or the most common free chemistry molecules.

ReferenceML method(s)TargetsC/OH|$_2$|OCO|$_2$|COCH|$_4$|NH|$_3$|HCNO|$_3$|
Gebhard et al. (2024)Convolutional neural networks and multilayer perceptrons (regression)Hot Jupiters and Earth-like planets        
Ardévol Martínez et al. (2024)Sequential neural posterior estimation with normalizing flows (regression)Wide range of planets, brown dwarfs        
Forestano et al. (2023)Local outlier factor, one-class support vector machine (unsupervised machine learning, outlier detection)Hot Jupiters        
Vasist et al. (2023)Neural posterior estimation with normalizing flows (regression)Gas giants        
Ardévol Martínez et al. (2022)Convolutional neural networks (regression)Gas giants        
Himes et al. (2022)Convolutional neural networks (regression)Hot Jupiters        
Matchev, Matcheva & Roman (2022a)k-means, PCA and ISOMAP (Unsupervised)Hot Jupiters        
Matchev, Matcheva & Roman (2022b)Symbolic regressionHot Jupiters        
Munsaket et al. (2021)Random forest (supervised ML, regression)Hot Jupiters        
Yip et al. (2021)Multilayer perceptrons, convolutional neural networks and long short-term memory networks (regression)Wide range of planets        
Guzmán-Mesa et al. (2020)Random forest (regression)Warm Neptunes        
Hayes et al. (2020)K-means, principal component analysis (unsupervised classification)Jupiter-like planets        
Nixon & Madhusudhan (2020)Random forest (regression)Hot Jupiters        
Cobb et al. (2019)Bayesian neural network (regression)Hot Jupiters        
Soboczenski et al. (2018)Convolutional neural networks with Monte Carlo dropout (regression)Rocky terrestrial exoplanets        
Marquez-Neila et al. (2018)Random forest (regression)Hot Jupiters        
Zingales & Waldmann (2018)Generative adversarial networks (regression)Hot Jupiters        
Waldmann (2016)Deep-belief networks (classification)Wide range of planets        
ReferenceML method(s)TargetsC/OH|$_2$|OCO|$_2$|COCH|$_4$|NH|$_3$|HCNO|$_3$|
Gebhard et al. (2024)Convolutional neural networks and multilayer perceptrons (regression)Hot Jupiters and Earth-like planets        
Ardévol Martínez et al. (2024)Sequential neural posterior estimation with normalizing flows (regression)Wide range of planets, brown dwarfs        
Forestano et al. (2023)Local outlier factor, one-class support vector machine (unsupervised machine learning, outlier detection)Hot Jupiters        
Vasist et al. (2023)Neural posterior estimation with normalizing flows (regression)Gas giants        
Ardévol Martínez et al. (2022)Convolutional neural networks (regression)Gas giants        
Himes et al. (2022)Convolutional neural networks (regression)Hot Jupiters        
Matchev, Matcheva & Roman (2022a)k-means, PCA and ISOMAP (Unsupervised)Hot Jupiters        
Matchev, Matcheva & Roman (2022b)Symbolic regressionHot Jupiters        
Munsaket et al. (2021)Random forest (supervised ML, regression)Hot Jupiters        
Yip et al. (2021)Multilayer perceptrons, convolutional neural networks and long short-term memory networks (regression)Wide range of planets        
Guzmán-Mesa et al. (2020)Random forest (regression)Warm Neptunes        
Hayes et al. (2020)K-means, principal component analysis (unsupervised classification)Jupiter-like planets        
Nixon & Madhusudhan (2020)Random forest (regression)Hot Jupiters        
Cobb et al. (2019)Bayesian neural network (regression)Hot Jupiters        
Soboczenski et al. (2018)Convolutional neural networks with Monte Carlo dropout (regression)Rocky terrestrial exoplanets        
Marquez-Neila et al. (2018)Random forest (regression)Hot Jupiters        
Zingales & Waldmann (2018)Generative adversarial networks (regression)Hot Jupiters        
Waldmann (2016)Deep-belief networks (classification)Wide range of planets        
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close