Performance comparison of RNALoc-LM and deep-learning baseline models using 5-fold CV.a
RNA type . | Deep-learning baseline model . | ACC . | Macro F1 . | Macro precision . | Macro recall . |
---|---|---|---|---|---|
lncRNA | RNA-FM + Transformer + MLP | 0.649 | 0.491 | 0.713 | 0.551 |
one-hot + TextCNN + Bi-LSTM + MLP | 0.633 | 0.388 | 0.316 | 0.500 | |
word2vec + TextCNN + Bi-LSTM + MLP | 0.633 | 0.388 | 0.316 | 0.500 | |
RNALoc-LM | 0.677 | 0.593 | 0.596 | 0.613 | |
miRNA | RNA-FM + Transformer + MLP | 0.913 | 0.903 | 0.901 | 0.907 |
one-hot + TextCNN + Bi-LSTM + MLP | 0.878 | 0.860 | 0.869 | 0.854 | |
word2vec + TextCNN + Bi-LSTM + MLP | 0.881 | 0.866 | 0.868 | 0.867 | |
RNALoc-LM | 0.913 | 0.903 | 0.899 | 0.909 | |
circRNA | RNA-FM + Transformer + MLP | 0.795 | 0.787 | 0.792 | 0.785 |
one-hot + TextCNN + Bi-LSTM + MLP | 0.797 | 0.789 | 0.794 | 0.786 | |
word2vec + TextCNN + Bi-LSTM + MLP | 0.802 | 0.795 | 0.799 | 0.793 | |
RNALoc-LM | 0.804 | 0.797 | 0.802 | 0.794 |
RNA type . | Deep-learning baseline model . | ACC . | Macro F1 . | Macro precision . | Macro recall . |
---|---|---|---|---|---|
lncRNA | RNA-FM + Transformer + MLP | 0.649 | 0.491 | 0.713 | 0.551 |
one-hot + TextCNN + Bi-LSTM + MLP | 0.633 | 0.388 | 0.316 | 0.500 | |
word2vec + TextCNN + Bi-LSTM + MLP | 0.633 | 0.388 | 0.316 | 0.500 | |
RNALoc-LM | 0.677 | 0.593 | 0.596 | 0.613 | |
miRNA | RNA-FM + Transformer + MLP | 0.913 | 0.903 | 0.901 | 0.907 |
one-hot + TextCNN + Bi-LSTM + MLP | 0.878 | 0.860 | 0.869 | 0.854 | |
word2vec + TextCNN + Bi-LSTM + MLP | 0.881 | 0.866 | 0.868 | 0.867 | |
RNALoc-LM | 0.913 | 0.903 | 0.899 | 0.909 | |
circRNA | RNA-FM + Transformer + MLP | 0.795 | 0.787 | 0.792 | 0.785 |
one-hot + TextCNN + Bi-LSTM + MLP | 0.797 | 0.789 | 0.794 | 0.786 | |
word2vec + TextCNN + Bi-LSTM + MLP | 0.802 | 0.795 | 0.799 | 0.793 | |
RNALoc-LM | 0.804 | 0.797 | 0.802 | 0.794 |
The best performance values are highlighted in bold.
Performance comparison of RNALoc-LM and deep-learning baseline models using 5-fold CV.a
RNA type . | Deep-learning baseline model . | ACC . | Macro F1 . | Macro precision . | Macro recall . |
---|---|---|---|---|---|
lncRNA | RNA-FM + Transformer + MLP | 0.649 | 0.491 | 0.713 | 0.551 |
one-hot + TextCNN + Bi-LSTM + MLP | 0.633 | 0.388 | 0.316 | 0.500 | |
word2vec + TextCNN + Bi-LSTM + MLP | 0.633 | 0.388 | 0.316 | 0.500 | |
RNALoc-LM | 0.677 | 0.593 | 0.596 | 0.613 | |
miRNA | RNA-FM + Transformer + MLP | 0.913 | 0.903 | 0.901 | 0.907 |
one-hot + TextCNN + Bi-LSTM + MLP | 0.878 | 0.860 | 0.869 | 0.854 | |
word2vec + TextCNN + Bi-LSTM + MLP | 0.881 | 0.866 | 0.868 | 0.867 | |
RNALoc-LM | 0.913 | 0.903 | 0.899 | 0.909 | |
circRNA | RNA-FM + Transformer + MLP | 0.795 | 0.787 | 0.792 | 0.785 |
one-hot + TextCNN + Bi-LSTM + MLP | 0.797 | 0.789 | 0.794 | 0.786 | |
word2vec + TextCNN + Bi-LSTM + MLP | 0.802 | 0.795 | 0.799 | 0.793 | |
RNALoc-LM | 0.804 | 0.797 | 0.802 | 0.794 |
RNA type . | Deep-learning baseline model . | ACC . | Macro F1 . | Macro precision . | Macro recall . |
---|---|---|---|---|---|
lncRNA | RNA-FM + Transformer + MLP | 0.649 | 0.491 | 0.713 | 0.551 |
one-hot + TextCNN + Bi-LSTM + MLP | 0.633 | 0.388 | 0.316 | 0.500 | |
word2vec + TextCNN + Bi-LSTM + MLP | 0.633 | 0.388 | 0.316 | 0.500 | |
RNALoc-LM | 0.677 | 0.593 | 0.596 | 0.613 | |
miRNA | RNA-FM + Transformer + MLP | 0.913 | 0.903 | 0.901 | 0.907 |
one-hot + TextCNN + Bi-LSTM + MLP | 0.878 | 0.860 | 0.869 | 0.854 | |
word2vec + TextCNN + Bi-LSTM + MLP | 0.881 | 0.866 | 0.868 | 0.867 | |
RNALoc-LM | 0.913 | 0.903 | 0.899 | 0.909 | |
circRNA | RNA-FM + Transformer + MLP | 0.795 | 0.787 | 0.792 | 0.785 |
one-hot + TextCNN + Bi-LSTM + MLP | 0.797 | 0.789 | 0.794 | 0.786 | |
word2vec + TextCNN + Bi-LSTM + MLP | 0.802 | 0.795 | 0.799 | 0.793 | |
RNALoc-LM | 0.804 | 0.797 | 0.802 | 0.794 |
The best performance values are highlighted in bold.
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.