Table 1.

Selected properties of the GGD.

PropertyEquation
PDF|$\frac{|Q|k^{k}}{x\sigma\Gamma(k)} \exp\left[ k(Qw - e^{Qw}) \right]$|
|$\text{where } w = \frac{log(x) - \mu}{\sigma}$|
PDF collapses to gamma when|$Q = \sigma$|
PDF collapses to lognormal as|$Q \to 0$|
Mean|$\Gamma \left(\frac{k\beta + 1}{\beta }\right) \cdot \frac{1}{\Gamma (k)} \cdot e^{\mu - \frac{\log (k)}{\beta }}, \quad \text{for } Q > 0$|
Variance|$\left(e^{\mu -\frac{\log (k)}{\beta }}\right)^{\!2} \cdot \left[ \frac{\Gamma \left(\frac{k\beta +2}{\beta }\right)}{\Gamma (k)} - \left(\frac{\Gamma \left(\frac{k\beta +1}{\beta }\right)}{\Gamma (k)} \!\right)^{\!2} \right], \, \, \text{for } Q > 0$|
CV|$\sqrt{ \Gamma(k) \cdot \Gamma\left( \frac{k\beta + 2}{\beta} \right) \cdot \left[ \! \Gamma\left( \frac{k\beta + 1}{\beta}\! \right) \right]^{\!-2}- 1}, \, \,\text{for } Q > 0$|
PropertyEquation
PDF|$\frac{|Q|k^{k}}{x\sigma\Gamma(k)} \exp\left[ k(Qw - e^{Qw}) \right]$|
|$\text{where } w = \frac{log(x) - \mu}{\sigma}$|
PDF collapses to gamma when|$Q = \sigma$|
PDF collapses to lognormal as|$Q \to 0$|
Mean|$\Gamma \left(\frac{k\beta + 1}{\beta }\right) \cdot \frac{1}{\Gamma (k)} \cdot e^{\mu - \frac{\log (k)}{\beta }}, \quad \text{for } Q > 0$|
Variance|$\left(e^{\mu -\frac{\log (k)}{\beta }}\right)^{\!2} \cdot \left[ \frac{\Gamma \left(\frac{k\beta +2}{\beta }\right)}{\Gamma (k)} - \left(\frac{\Gamma \left(\frac{k\beta +1}{\beta }\right)}{\Gamma (k)} \!\right)^{\!2} \right], \, \, \text{for } Q > 0$|
CV|$\sqrt{ \Gamma(k) \cdot \Gamma\left( \frac{k\beta + 2}{\beta} \right) \cdot \left[ \! \Gamma\left( \frac{k\beta + 1}{\beta}\! \right) \right]^{\!-2}- 1}, \, \,\text{for } Q > 0$|

We define μ as the location parameter, σ as the scale parameter, and Q as the family or shape parameter. In this form of the PDF, μ > 0 and σ > 0, and Q ∈ (−∞, +∞). We further define two temporary variables to simplify notation: β = Q/σ and k = Q  −2. The symbol Γ is the gamma function. Our parameterization is based on Prentice (1974), Lawless (1980), and Jackson (2016). Moments for |$Q > 0$| are derived in Stacy and Mihram (1965).

Table 1.

Selected properties of the GGD.

PropertyEquation
PDF|$\frac{|Q|k^{k}}{x\sigma\Gamma(k)} \exp\left[ k(Qw - e^{Qw}) \right]$|
|$\text{where } w = \frac{log(x) - \mu}{\sigma}$|
PDF collapses to gamma when|$Q = \sigma$|
PDF collapses to lognormal as|$Q \to 0$|
Mean|$\Gamma \left(\frac{k\beta + 1}{\beta }\right) \cdot \frac{1}{\Gamma (k)} \cdot e^{\mu - \frac{\log (k)}{\beta }}, \quad \text{for } Q > 0$|
Variance|$\left(e^{\mu -\frac{\log (k)}{\beta }}\right)^{\!2} \cdot \left[ \frac{\Gamma \left(\frac{k\beta +2}{\beta }\right)}{\Gamma (k)} - \left(\frac{\Gamma \left(\frac{k\beta +1}{\beta }\right)}{\Gamma (k)} \!\right)^{\!2} \right], \, \, \text{for } Q > 0$|
CV|$\sqrt{ \Gamma(k) \cdot \Gamma\left( \frac{k\beta + 2}{\beta} \right) \cdot \left[ \! \Gamma\left( \frac{k\beta + 1}{\beta}\! \right) \right]^{\!-2}- 1}, \, \,\text{for } Q > 0$|
PropertyEquation
PDF|$\frac{|Q|k^{k}}{x\sigma\Gamma(k)} \exp\left[ k(Qw - e^{Qw}) \right]$|
|$\text{where } w = \frac{log(x) - \mu}{\sigma}$|
PDF collapses to gamma when|$Q = \sigma$|
PDF collapses to lognormal as|$Q \to 0$|
Mean|$\Gamma \left(\frac{k\beta + 1}{\beta }\right) \cdot \frac{1}{\Gamma (k)} \cdot e^{\mu - \frac{\log (k)}{\beta }}, \quad \text{for } Q > 0$|
Variance|$\left(e^{\mu -\frac{\log (k)}{\beta }}\right)^{\!2} \cdot \left[ \frac{\Gamma \left(\frac{k\beta +2}{\beta }\right)}{\Gamma (k)} - \left(\frac{\Gamma \left(\frac{k\beta +1}{\beta }\right)}{\Gamma (k)} \!\right)^{\!2} \right], \, \, \text{for } Q > 0$|
CV|$\sqrt{ \Gamma(k) \cdot \Gamma\left( \frac{k\beta + 2}{\beta} \right) \cdot \left[ \! \Gamma\left( \frac{k\beta + 1}{\beta}\! \right) \right]^{\!-2}- 1}, \, \,\text{for } Q > 0$|

We define μ as the location parameter, σ as the scale parameter, and Q as the family or shape parameter. In this form of the PDF, μ > 0 and σ > 0, and Q ∈ (−∞, +∞). We further define two temporary variables to simplify notation: β = Q/σ and k = Q  −2. The symbol Γ is the gamma function. Our parameterization is based on Prentice (1974), Lawless (1980), and Jackson (2016). Moments for |$Q > 0$| are derived in Stacy and Mihram (1965).

Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close