Variables . | Growth rate . |
---|---|
|$r, \frac{P^H H}{NNP}, \frac{W}{NNP}, \frac{P^{LH} L^H}{P^H H}, L^Y, L^H, N^X, N^Y, N^{L}$| | 0 |
|$Y, K, M, w, R^{LY}, P^{LY}, P^{LH}, C, NNP, W$| | |$ \frac{\beta }{1-\alpha } g^Y$| |
|$X, I^X$| | |$ \eta \frac{\beta }{1-\alpha } g^Y + (1-\eta ) g^X$| |
|$P^X$| | |$ (1-\eta ) \left( \frac{\beta }{1-\alpha } g^Y - g^X \right)$| |
|$D, H$| | |$ \gamma \eta \frac{\beta }{1-\alpha } g^Y + \gamma (1-\eta ) g^X$| |
|$q, P^H$| | |$ (1-\gamma \eta ) \frac{\beta }{1-\alpha } g^Y - \gamma (1-\eta ) g^X$| |
Variables . | Growth rate . |
---|---|
|$r, \frac{P^H H}{NNP}, \frac{W}{NNP}, \frac{P^{LH} L^H}{P^H H}, L^Y, L^H, N^X, N^Y, N^{L}$| | 0 |
|$Y, K, M, w, R^{LY}, P^{LY}, P^{LH}, C, NNP, W$| | |$ \frac{\beta }{1-\alpha } g^Y$| |
|$X, I^X$| | |$ \eta \frac{\beta }{1-\alpha } g^Y + (1-\eta ) g^X$| |
|$P^X$| | |$ (1-\eta ) \left( \frac{\beta }{1-\alpha } g^Y - g^X \right)$| |
|$D, H$| | |$ \gamma \eta \frac{\beta }{1-\alpha } g^Y + \gamma (1-\eta ) g^X$| |
|$q, P^H$| | |$ (1-\gamma \eta ) \frac{\beta }{1-\alpha } g^Y - \gamma (1-\eta ) g^X$| |
Variables . | Growth rate . |
---|---|
|$r, \frac{P^H H}{NNP}, \frac{W}{NNP}, \frac{P^{LH} L^H}{P^H H}, L^Y, L^H, N^X, N^Y, N^{L}$| | 0 |
|$Y, K, M, w, R^{LY}, P^{LY}, P^{LH}, C, NNP, W$| | |$ \frac{\beta }{1-\alpha } g^Y$| |
|$X, I^X$| | |$ \eta \frac{\beta }{1-\alpha } g^Y + (1-\eta ) g^X$| |
|$P^X$| | |$ (1-\eta ) \left( \frac{\beta }{1-\alpha } g^Y - g^X \right)$| |
|$D, H$| | |$ \gamma \eta \frac{\beta }{1-\alpha } g^Y + \gamma (1-\eta ) g^X$| |
|$q, P^H$| | |$ (1-\gamma \eta ) \frac{\beta }{1-\alpha } g^Y - \gamma (1-\eta ) g^X$| |
Variables . | Growth rate . |
---|---|
|$r, \frac{P^H H}{NNP}, \frac{W}{NNP}, \frac{P^{LH} L^H}{P^H H}, L^Y, L^H, N^X, N^Y, N^{L}$| | 0 |
|$Y, K, M, w, R^{LY}, P^{LY}, P^{LH}, C, NNP, W$| | |$ \frac{\beta }{1-\alpha } g^Y$| |
|$X, I^X$| | |$ \eta \frac{\beta }{1-\alpha } g^Y + (1-\eta ) g^X$| |
|$P^X$| | |$ (1-\eta ) \left( \frac{\beta }{1-\alpha } g^Y - g^X \right)$| |
|$D, H$| | |$ \gamma \eta \frac{\beta }{1-\alpha } g^Y + \gamma (1-\eta ) g^X$| |
|$q, P^H$| | |$ (1-\gamma \eta ) \frac{\beta }{1-\alpha } g^Y - \gamma (1-\eta ) g^X$| |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.