Performance comparison of SVM, RF, D-SCRIPT, Topsy-Turvy, Alphafold3, PIPR, and ProNEP on the independent test dataset.a
Model . | Accuracy . | Precision . | Sensitivity . | F1-score . | AUROC . | AUPRC . |
---|---|---|---|---|---|---|
SVM | 0.781 ± 0.024 | 0.157 ± 0.028 | 0.323 ± 0.037 | 0.277 ± 0.168 | 0.617 ± 0.065 | 0.176 ± 0.057 |
RF | 0.806 ± 0.075 | 0.749 ± 0.086 | 0.610 ± 0.122 | 0.716 ± 0.121 | 0.783 ± 0.127 | 0.483 ± 0.117 |
D-SCRIPT | 0.609 ± 0.073 | 0.324 ± 0.233 | 0.719 ± 0.252 | 0.335 ± 0.056 | 0.686 ± 0.065 | 0.306 ± 0.093 |
Topsy-Turvy | 0.672 ± 0.117 | 0.225 ± 0.128 | 0.546 ± 0.329 | 0.221 ± 0.046 | 0.64 ± 0.046 | 0.359 ± 0.117 |
Alphafold3 | 0.185 | 0.0952 | 0.9189 | 0.1726 | 0.5688 | 0.1185 |
PIPR | 0.912 ± 0.008 | 0.569 ± 0.032 | 0.594 ± 0.026 | 0.581 ± 0.026 | 0.879 ± 0.016 | 0.678 ± 0.004 |
ProNEP | 0.914 ± 0.028 | 0.945 ± 0.035 | 0.915 ± 0.036 | 0.928 ± 0.022 | 0.966 ± 0.012 | 0.747 ± 0.054 |
Model . | Accuracy . | Precision . | Sensitivity . | F1-score . | AUROC . | AUPRC . |
---|---|---|---|---|---|---|
SVM | 0.781 ± 0.024 | 0.157 ± 0.028 | 0.323 ± 0.037 | 0.277 ± 0.168 | 0.617 ± 0.065 | 0.176 ± 0.057 |
RF | 0.806 ± 0.075 | 0.749 ± 0.086 | 0.610 ± 0.122 | 0.716 ± 0.121 | 0.783 ± 0.127 | 0.483 ± 0.117 |
D-SCRIPT | 0.609 ± 0.073 | 0.324 ± 0.233 | 0.719 ± 0.252 | 0.335 ± 0.056 | 0.686 ± 0.065 | 0.306 ± 0.093 |
Topsy-Turvy | 0.672 ± 0.117 | 0.225 ± 0.128 | 0.546 ± 0.329 | 0.221 ± 0.046 | 0.64 ± 0.046 | 0.359 ± 0.117 |
Alphafold3 | 0.185 | 0.0952 | 0.9189 | 0.1726 | 0.5688 | 0.1185 |
PIPR | 0.912 ± 0.008 | 0.569 ± 0.032 | 0.594 ± 0.026 | 0.581 ± 0.026 | 0.879 ± 0.016 | 0.678 ± 0.004 |
ProNEP | 0.914 ± 0.028 | 0.945 ± 0.035 | 0.915 ± 0.036 | 0.928 ± 0.022 | 0.966 ± 0.012 | 0.747 ± 0.054 |
ProNEP was trained 10 times with 10 different negative samples, while the other models, excluding Alphafold3, were trained 6 times. All models, except Alphafold3, used a threshold that maximized the F1 score.
Performance comparison of SVM, RF, D-SCRIPT, Topsy-Turvy, Alphafold3, PIPR, and ProNEP on the independent test dataset.a
Model . | Accuracy . | Precision . | Sensitivity . | F1-score . | AUROC . | AUPRC . |
---|---|---|---|---|---|---|
SVM | 0.781 ± 0.024 | 0.157 ± 0.028 | 0.323 ± 0.037 | 0.277 ± 0.168 | 0.617 ± 0.065 | 0.176 ± 0.057 |
RF | 0.806 ± 0.075 | 0.749 ± 0.086 | 0.610 ± 0.122 | 0.716 ± 0.121 | 0.783 ± 0.127 | 0.483 ± 0.117 |
D-SCRIPT | 0.609 ± 0.073 | 0.324 ± 0.233 | 0.719 ± 0.252 | 0.335 ± 0.056 | 0.686 ± 0.065 | 0.306 ± 0.093 |
Topsy-Turvy | 0.672 ± 0.117 | 0.225 ± 0.128 | 0.546 ± 0.329 | 0.221 ± 0.046 | 0.64 ± 0.046 | 0.359 ± 0.117 |
Alphafold3 | 0.185 | 0.0952 | 0.9189 | 0.1726 | 0.5688 | 0.1185 |
PIPR | 0.912 ± 0.008 | 0.569 ± 0.032 | 0.594 ± 0.026 | 0.581 ± 0.026 | 0.879 ± 0.016 | 0.678 ± 0.004 |
ProNEP | 0.914 ± 0.028 | 0.945 ± 0.035 | 0.915 ± 0.036 | 0.928 ± 0.022 | 0.966 ± 0.012 | 0.747 ± 0.054 |
Model . | Accuracy . | Precision . | Sensitivity . | F1-score . | AUROC . | AUPRC . |
---|---|---|---|---|---|---|
SVM | 0.781 ± 0.024 | 0.157 ± 0.028 | 0.323 ± 0.037 | 0.277 ± 0.168 | 0.617 ± 0.065 | 0.176 ± 0.057 |
RF | 0.806 ± 0.075 | 0.749 ± 0.086 | 0.610 ± 0.122 | 0.716 ± 0.121 | 0.783 ± 0.127 | 0.483 ± 0.117 |
D-SCRIPT | 0.609 ± 0.073 | 0.324 ± 0.233 | 0.719 ± 0.252 | 0.335 ± 0.056 | 0.686 ± 0.065 | 0.306 ± 0.093 |
Topsy-Turvy | 0.672 ± 0.117 | 0.225 ± 0.128 | 0.546 ± 0.329 | 0.221 ± 0.046 | 0.64 ± 0.046 | 0.359 ± 0.117 |
Alphafold3 | 0.185 | 0.0952 | 0.9189 | 0.1726 | 0.5688 | 0.1185 |
PIPR | 0.912 ± 0.008 | 0.569 ± 0.032 | 0.594 ± 0.026 | 0.581 ± 0.026 | 0.879 ± 0.016 | 0.678 ± 0.004 |
ProNEP | 0.914 ± 0.028 | 0.945 ± 0.035 | 0.915 ± 0.036 | 0.928 ± 0.022 | 0.966 ± 0.012 | 0.747 ± 0.054 |
ProNEP was trained 10 times with 10 different negative samples, while the other models, excluding Alphafold3, were trained 6 times. All models, except Alphafold3, used a threshold that maximized the F1 score.
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.