Table 1.

Simulation scenarios considered

 f(d,z)σyz1z2doptfoptsesmonotone
Simulation Study1) 1{z1=0}×g1(d)2.0150(1,1)1.5920.79Yes
1{z1=1}×g1(d)1(1,1)1.5920.79Yes
2) 1{z1=0}×g2(d)0.3190(0.25,0.75)1.2033.77No
1{z1=1}×g3(d)1(0.75,0.25)1.2033.77No
3) 1{(z1=0,z2=0)}×0100NoneNone0No
1{(z1=0,z2=1)}×0.831g2(d)01(0.25,0.75)11No
1{(z1=1,z2=0)}×3.134g3(d)10(0.75,0.25)3.773.77No
1{(z1=1,z2=1)}×0.496g1(d)11(1,1)0.790.79Yes
Implant1) 1(z1=0)×2.49g2(d)50(0.25,0.75)51No
1(z1=1)×6.65g3(d)21(0.75,0.25)102No
 f(d,z)σyz1z2doptfoptsesmonotone
Simulation Study1) 1{z1=0}×g1(d)2.0150(1,1)1.5920.79Yes
1{z1=1}×g1(d)1(1,1)1.5920.79Yes
2) 1{z1=0}×g2(d)0.3190(0.25,0.75)1.2033.77No
1{z1=1}×g3(d)1(0.75,0.25)1.2033.77No
3) 1{(z1=0,z2=0)}×0100NoneNone0No
1{(z1=0,z2=1)}×0.831g2(d)01(0.25,0.75)11No
1{(z1=1,z2=0)}×3.134g3(d)10(0.75,0.25)3.773.77No
1{(z1=1,z2=1)}×0.496g1(d)11(1,1)0.790.79Yes
Implant1) 1(z1=0)×2.49g2(d)50(0.25,0.75)51No
1(z1=1)×6.65g3(d)21(0.75,0.25)102No

Note. The data-generating mechanism for each scenario is y=f(d,z)+ϵ where ϵN(0,σy2). The table columns contain the location of the optimal dose combination (dopt), the optimal value of the efficacy function (fopt), the standardized effect size (ses), and whether or not the dose-efficacy surface is monotonically increasing with respect to each dosing dimension (monotone). Note that gi(d) for 1=1,2,3 represents the value of a bivariate normal density function with specific mean vector and covariance matrix evaluated at d as defined in the text. The subtraction of 2 in f(d,z) under the Implant scenario corresponds to a base level of drug response outside the regions of optimality.

Table 1.

Simulation scenarios considered

 f(d,z)σyz1z2doptfoptsesmonotone
Simulation Study1) 1{z1=0}×g1(d)2.0150(1,1)1.5920.79Yes
1{z1=1}×g1(d)1(1,1)1.5920.79Yes
2) 1{z1=0}×g2(d)0.3190(0.25,0.75)1.2033.77No
1{z1=1}×g3(d)1(0.75,0.25)1.2033.77No
3) 1{(z1=0,z2=0)}×0100NoneNone0No
1{(z1=0,z2=1)}×0.831g2(d)01(0.25,0.75)11No
1{(z1=1,z2=0)}×3.134g3(d)10(0.75,0.25)3.773.77No
1{(z1=1,z2=1)}×0.496g1(d)11(1,1)0.790.79Yes
Implant1) 1(z1=0)×2.49g2(d)50(0.25,0.75)51No
1(z1=1)×6.65g3(d)21(0.75,0.25)102No
 f(d,z)σyz1z2doptfoptsesmonotone
Simulation Study1) 1{z1=0}×g1(d)2.0150(1,1)1.5920.79Yes
1{z1=1}×g1(d)1(1,1)1.5920.79Yes
2) 1{z1=0}×g2(d)0.3190(0.25,0.75)1.2033.77No
1{z1=1}×g3(d)1(0.75,0.25)1.2033.77No
3) 1{(z1=0,z2=0)}×0100NoneNone0No
1{(z1=0,z2=1)}×0.831g2(d)01(0.25,0.75)11No
1{(z1=1,z2=0)}×3.134g3(d)10(0.75,0.25)3.773.77No
1{(z1=1,z2=1)}×0.496g1(d)11(1,1)0.790.79Yes
Implant1) 1(z1=0)×2.49g2(d)50(0.25,0.75)51No
1(z1=1)×6.65g3(d)21(0.75,0.25)102No

Note. The data-generating mechanism for each scenario is y=f(d,z)+ϵ where ϵN(0,σy2). The table columns contain the location of the optimal dose combination (dopt), the optimal value of the efficacy function (fopt), the standardized effect size (ses), and whether or not the dose-efficacy surface is monotonically increasing with respect to each dosing dimension (monotone). Note that gi(d) for 1=1,2,3 represents the value of a bivariate normal density function with specific mean vector and covariance matrix evaluated at d as defined in the text. The subtraction of 2 in f(d,z) under the Implant scenario corresponds to a base level of drug response outside the regions of optimality.

Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close