Table 4.

The primary evaluation metrics obtained from training the CNN models using the Applied1 setting on the training data set. The models predict lensing probability values ranging between 0 and 1. However, to calculate the evaluation metrics, we have set a threshold of 0.99 to distinguish between lensed and non-lensed samples. The test data set comprises 96 072 samples evenly split between lensed and non-lensed categories.

ModelTPFP
DenseNet1210.899|$1.4 \times 10^{-3}$|
DenseNet1690.914|$2.9 \times 10^{-3}$|
EfficientNetB30.946|$2.2 \times 10^{-3}$|
EfficientNetB40.951|$2.4 \times 10^{-3}$|
DenseNet121, EfficientNetB30.898|$6.8 \times 10^{-4}$|
DenseNet169, EfficientNetB30.900|$5.4 \times 10^{-4}$|
DenseNet121, EfficientNetB40.898|$6.2 \times 10^{-4}$|
DenseNet169, EfficientNetB40.910|$4.9 \times 10^{-4}$|
EfficientNetB3, EfficientNetB40.938|$9.5 \times 10^{-4}$|
DenseNet121, DenseNet1690.886|$6.2 \times 10^{-4}$|
DenseNet121, EfficientNetB3, EfficientNetB40.897|$4.7 \times 10^{-4}$|
DenseNet169, EfficientNetB3, EfficientNetB40.906|$3.5 \times 10^{-4}$|
ModelTPFP
DenseNet1210.899|$1.4 \times 10^{-3}$|
DenseNet1690.914|$2.9 \times 10^{-3}$|
EfficientNetB30.946|$2.2 \times 10^{-3}$|
EfficientNetB40.951|$2.4 \times 10^{-3}$|
DenseNet121, EfficientNetB30.898|$6.8 \times 10^{-4}$|
DenseNet169, EfficientNetB30.900|$5.4 \times 10^{-4}$|
DenseNet121, EfficientNetB40.898|$6.2 \times 10^{-4}$|
DenseNet169, EfficientNetB40.910|$4.9 \times 10^{-4}$|
EfficientNetB3, EfficientNetB40.938|$9.5 \times 10^{-4}$|
DenseNet121, DenseNet1690.886|$6.2 \times 10^{-4}$|
DenseNet121, EfficientNetB3, EfficientNetB40.897|$4.7 \times 10^{-4}$|
DenseNet169, EfficientNetB3, EfficientNetB40.906|$3.5 \times 10^{-4}$|
Table 4.

The primary evaluation metrics obtained from training the CNN models using the Applied1 setting on the training data set. The models predict lensing probability values ranging between 0 and 1. However, to calculate the evaluation metrics, we have set a threshold of 0.99 to distinguish between lensed and non-lensed samples. The test data set comprises 96 072 samples evenly split between lensed and non-lensed categories.

ModelTPFP
DenseNet1210.899|$1.4 \times 10^{-3}$|
DenseNet1690.914|$2.9 \times 10^{-3}$|
EfficientNetB30.946|$2.2 \times 10^{-3}$|
EfficientNetB40.951|$2.4 \times 10^{-3}$|
DenseNet121, EfficientNetB30.898|$6.8 \times 10^{-4}$|
DenseNet169, EfficientNetB30.900|$5.4 \times 10^{-4}$|
DenseNet121, EfficientNetB40.898|$6.2 \times 10^{-4}$|
DenseNet169, EfficientNetB40.910|$4.9 \times 10^{-4}$|
EfficientNetB3, EfficientNetB40.938|$9.5 \times 10^{-4}$|
DenseNet121, DenseNet1690.886|$6.2 \times 10^{-4}$|
DenseNet121, EfficientNetB3, EfficientNetB40.897|$4.7 \times 10^{-4}$|
DenseNet169, EfficientNetB3, EfficientNetB40.906|$3.5 \times 10^{-4}$|
ModelTPFP
DenseNet1210.899|$1.4 \times 10^{-3}$|
DenseNet1690.914|$2.9 \times 10^{-3}$|
EfficientNetB30.946|$2.2 \times 10^{-3}$|
EfficientNetB40.951|$2.4 \times 10^{-3}$|
DenseNet121, EfficientNetB30.898|$6.8 \times 10^{-4}$|
DenseNet169, EfficientNetB30.900|$5.4 \times 10^{-4}$|
DenseNet121, EfficientNetB40.898|$6.2 \times 10^{-4}$|
DenseNet169, EfficientNetB40.910|$4.9 \times 10^{-4}$|
EfficientNetB3, EfficientNetB40.938|$9.5 \times 10^{-4}$|
DenseNet121, DenseNet1690.886|$6.2 \times 10^{-4}$|
DenseNet121, EfficientNetB3, EfficientNetB40.897|$4.7 \times 10^{-4}$|
DenseNet169, EfficientNetB3, EfficientNetB40.906|$3.5 \times 10^{-4}$|
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close