Observation log and parameters and results of the periodic analysis for PKS J2134−0153.
Band . | MJD . | Time span (days) . | |$N_{\mathrm{data}}$| . | |$N_{\mathrm{eval}}$| . | |$f_{\mathrm{min}}\ (\mathrm{day^{-1}})$| . | |$f_{\mathrm{max}}\ (\mathrm{day^{-1}})$| . | P (days) . | |$\Delta$|P (days) . |
---|---|---|---|---|---|---|---|---|
(1) . | (2) . | (3) . | (4) . | (5) . | (6) . | (7) . | (8) . | (9) . |
Infrared (W1 & W2) | 55332–59885 | 4553 | 162 | |||||
|${W1}_{\mathrm{binned}}$| | 55332–59878 | 4546 | 19 | 90 | 1/4546 | 1/505 | |$1.6\times 10^3$| | |$0.4\times 10^3$| |
V | 53494–56593 | 3099 | 415 | |||||
g | 58263–60244 | 1981 | 326 | |||||
r | 58256–60244 | 1988 | 416 | |||||
i | 58280–58771 | 491 | 42 | |||||
c | 57246–60292 | 3046 | 611 | |||||
|${V_{\mathrm{synthetic}}}$| | 53494–60292 | 6798 | 1352 | 6798 | 1/6798 | 1/10 | |$1.8\times 10^3$| | |$1\times 10^3$| |
Band . | MJD . | Time span (days) . | |$N_{\mathrm{data}}$| . | |$N_{\mathrm{eval}}$| . | |$f_{\mathrm{min}}\ (\mathrm{day^{-1}})$| . | |$f_{\mathrm{max}}\ (\mathrm{day^{-1}})$| . | P (days) . | |$\Delta$|P (days) . |
---|---|---|---|---|---|---|---|---|
(1) . | (2) . | (3) . | (4) . | (5) . | (6) . | (7) . | (8) . | (9) . |
Infrared (W1 & W2) | 55332–59885 | 4553 | 162 | |||||
|${W1}_{\mathrm{binned}}$| | 55332–59878 | 4546 | 19 | 90 | 1/4546 | 1/505 | |$1.6\times 10^3$| | |$0.4\times 10^3$| |
V | 53494–56593 | 3099 | 415 | |||||
g | 58263–60244 | 1981 | 326 | |||||
r | 58256–60244 | 1988 | 416 | |||||
i | 58280–58771 | 491 | 42 | |||||
c | 57246–60292 | 3046 | 611 | |||||
|${V_{\mathrm{synthetic}}}$| | 53494–60292 | 6798 | 1352 | 6798 | 1/6798 | 1/10 | |$1.8\times 10^3$| | |$1\times 10^3$| |
Notes. Columns: (1) band; (2) start and end time (MJD) of the observations; (3) time separation between the first and the last observation; (4) total number of observations; (5) total number of periodogram evaluations; (6) minimum frequency of periodogram evaluations; (7) maximum frequency of periodogram evaluations; (8) estimated period via LSP analysis; (9) period uncertainties (half-width at half-maximum, corresponds to |$\simeq 1.2 \sigma$| for a Gaussian distribution).
Observation log and parameters and results of the periodic analysis for PKS J2134−0153.
Band . | MJD . | Time span (days) . | |$N_{\mathrm{data}}$| . | |$N_{\mathrm{eval}}$| . | |$f_{\mathrm{min}}\ (\mathrm{day^{-1}})$| . | |$f_{\mathrm{max}}\ (\mathrm{day^{-1}})$| . | P (days) . | |$\Delta$|P (days) . |
---|---|---|---|---|---|---|---|---|
(1) . | (2) . | (3) . | (4) . | (5) . | (6) . | (7) . | (8) . | (9) . |
Infrared (W1 & W2) | 55332–59885 | 4553 | 162 | |||||
|${W1}_{\mathrm{binned}}$| | 55332–59878 | 4546 | 19 | 90 | 1/4546 | 1/505 | |$1.6\times 10^3$| | |$0.4\times 10^3$| |
V | 53494–56593 | 3099 | 415 | |||||
g | 58263–60244 | 1981 | 326 | |||||
r | 58256–60244 | 1988 | 416 | |||||
i | 58280–58771 | 491 | 42 | |||||
c | 57246–60292 | 3046 | 611 | |||||
|${V_{\mathrm{synthetic}}}$| | 53494–60292 | 6798 | 1352 | 6798 | 1/6798 | 1/10 | |$1.8\times 10^3$| | |$1\times 10^3$| |
Band . | MJD . | Time span (days) . | |$N_{\mathrm{data}}$| . | |$N_{\mathrm{eval}}$| . | |$f_{\mathrm{min}}\ (\mathrm{day^{-1}})$| . | |$f_{\mathrm{max}}\ (\mathrm{day^{-1}})$| . | P (days) . | |$\Delta$|P (days) . |
---|---|---|---|---|---|---|---|---|
(1) . | (2) . | (3) . | (4) . | (5) . | (6) . | (7) . | (8) . | (9) . |
Infrared (W1 & W2) | 55332–59885 | 4553 | 162 | |||||
|${W1}_{\mathrm{binned}}$| | 55332–59878 | 4546 | 19 | 90 | 1/4546 | 1/505 | |$1.6\times 10^3$| | |$0.4\times 10^3$| |
V | 53494–56593 | 3099 | 415 | |||||
g | 58263–60244 | 1981 | 326 | |||||
r | 58256–60244 | 1988 | 416 | |||||
i | 58280–58771 | 491 | 42 | |||||
c | 57246–60292 | 3046 | 611 | |||||
|${V_{\mathrm{synthetic}}}$| | 53494–60292 | 6798 | 1352 | 6798 | 1/6798 | 1/10 | |$1.8\times 10^3$| | |$1\times 10^3$| |
Notes. Columns: (1) band; (2) start and end time (MJD) of the observations; (3) time separation between the first and the last observation; (4) total number of observations; (5) total number of periodogram evaluations; (6) minimum frequency of periodogram evaluations; (7) maximum frequency of periodogram evaluations; (8) estimated period via LSP analysis; (9) period uncertainties (half-width at half-maximum, corresponds to |$\simeq 1.2 \sigma$| for a Gaussian distribution).
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.