Table 2.

Optimal models of the extended standard anelastic solid type (Section 2.4) fitted simultaneously to the variations of modulus and dissipation with oscillation period for the lowest differential pressure Pd of 5 MPa. Values of selected parameters were refined by the Levenberg–Marquardt scheme for iterative non-linear least-squares fitting to minimize the objective function |${\chi ^2} = \,\,\chi _M^2 + \chi _{{Q^{ - 1}}}^2$|⁠. Values in parentheses indicate the uncertainties in the last digit of the refined value, whereas parameter values in square brackets were held constant. ‘Background + peak’ models are denoted ‘bg + pk’, whereas peak-only models are denoted ‘pk’.

Parameter, unitGlycerine saturationGlycerine and water saturation
 G & QG−1E & QE−1G & QG−1E & QE−1(adj)K & QK−1
 pkpkbg + pkbg + pkbg + pk
N, (M, logQM−1) pairs99181811
Pd, MPa55555
GU/EU/KU, GPa14.7(3)28.8(4)11.9(2)26.0(3)16.6(3)
ΔB(0)(0)(0.6)1.1(3)2.1(6)
α(0.25)0.39(6)0.36(8)
log(τLR, s)(−5.0)(−5.0)(−5.0)
log(τHR, s)(5.0)(5.0)(5.0)
ΔP0.86(5)0.35(3)0.48(2)0.45(2)1.11(5)
log(τPR, s)1.2(4)1.8(1)−2.20(6)−1.26(3)−0.89(2)
σ(6)1.7(2)(3)1.42(7)0.55(10)
χ2M0.290.9156.2212.7325.0
|$\chi _{{Q^{ - 1}}}^2$|2.9519.032.592.1215.8
χ2T3.2419.9188.7304.8540.8
2T/2 N)1/20.421.052.292.914.96
Parameter, unitGlycerine saturationGlycerine and water saturation
 G & QG−1E & QE−1G & QG−1E & QE−1(adj)K & QK−1
 pkpkbg + pkbg + pkbg + pk
N, (M, logQM−1) pairs99181811
Pd, MPa55555
GU/EU/KU, GPa14.7(3)28.8(4)11.9(2)26.0(3)16.6(3)
ΔB(0)(0)(0.6)1.1(3)2.1(6)
α(0.25)0.39(6)0.36(8)
log(τLR, s)(−5.0)(−5.0)(−5.0)
log(τHR, s)(5.0)(5.0)(5.0)
ΔP0.86(5)0.35(3)0.48(2)0.45(2)1.11(5)
log(τPR, s)1.2(4)1.8(1)−2.20(6)−1.26(3)−0.89(2)
σ(6)1.7(2)(3)1.42(7)0.55(10)
χ2M0.290.9156.2212.7325.0
|$\chi _{{Q^{ - 1}}}^2$|2.9519.032.592.1215.8
χ2T3.2419.9188.7304.8540.8
2T/2 N)1/20.421.052.292.914.96
Table 2.

Optimal models of the extended standard anelastic solid type (Section 2.4) fitted simultaneously to the variations of modulus and dissipation with oscillation period for the lowest differential pressure Pd of 5 MPa. Values of selected parameters were refined by the Levenberg–Marquardt scheme for iterative non-linear least-squares fitting to minimize the objective function |${\chi ^2} = \,\,\chi _M^2 + \chi _{{Q^{ - 1}}}^2$|⁠. Values in parentheses indicate the uncertainties in the last digit of the refined value, whereas parameter values in square brackets were held constant. ‘Background + peak’ models are denoted ‘bg + pk’, whereas peak-only models are denoted ‘pk’.

Parameter, unitGlycerine saturationGlycerine and water saturation
 G & QG−1E & QE−1G & QG−1E & QE−1(adj)K & QK−1
 pkpkbg + pkbg + pkbg + pk
N, (M, logQM−1) pairs99181811
Pd, MPa55555
GU/EU/KU, GPa14.7(3)28.8(4)11.9(2)26.0(3)16.6(3)
ΔB(0)(0)(0.6)1.1(3)2.1(6)
α(0.25)0.39(6)0.36(8)
log(τLR, s)(−5.0)(−5.0)(−5.0)
log(τHR, s)(5.0)(5.0)(5.0)
ΔP0.86(5)0.35(3)0.48(2)0.45(2)1.11(5)
log(τPR, s)1.2(4)1.8(1)−2.20(6)−1.26(3)−0.89(2)
σ(6)1.7(2)(3)1.42(7)0.55(10)
χ2M0.290.9156.2212.7325.0
|$\chi _{{Q^{ - 1}}}^2$|2.9519.032.592.1215.8
χ2T3.2419.9188.7304.8540.8
2T/2 N)1/20.421.052.292.914.96
Parameter, unitGlycerine saturationGlycerine and water saturation
 G & QG−1E & QE−1G & QG−1E & QE−1(adj)K & QK−1
 pkpkbg + pkbg + pkbg + pk
N, (M, logQM−1) pairs99181811
Pd, MPa55555
GU/EU/KU, GPa14.7(3)28.8(4)11.9(2)26.0(3)16.6(3)
ΔB(0)(0)(0.6)1.1(3)2.1(6)
α(0.25)0.39(6)0.36(8)
log(τLR, s)(−5.0)(−5.0)(−5.0)
log(τHR, s)(5.0)(5.0)(5.0)
ΔP0.86(5)0.35(3)0.48(2)0.45(2)1.11(5)
log(τPR, s)1.2(4)1.8(1)−2.20(6)−1.26(3)−0.89(2)
σ(6)1.7(2)(3)1.42(7)0.55(10)
χ2M0.290.9156.2212.7325.0
|$\chi _{{Q^{ - 1}}}^2$|2.9519.032.592.1215.8
χ2T3.2419.9188.7304.8540.8
2T/2 N)1/20.421.052.292.914.96
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close