Table 3.

Key parameters of different SED fits to the host of SN 2023tsz, with different SFH burst age parametrizations. The chosen burst age for the best fit (i.e. the lowest reduced chi-squared) is given with the model.

Modellog(SFR) (⁠|${\rm M}_{\odot } \, {\rm yr}^{-1}$|⁠)log(stellar mass) (⁠|${\rm M}_{\odot }$|⁠)log(sSFR) (⁠|${\rm yr}^{-1}$|⁠)|$\chi ^2$|
Scenario 1 (burst age = 50 Myr)–2.587.06–9.640.22
Scenario 2 (burst age = 100 Myr)–2.837.08–9.910.44
Scenario 3 (burst age = 5 Myr)–2.956.64–9.591.74
Modellog(SFR) (⁠|${\rm M}_{\odot } \, {\rm yr}^{-1}$|⁠)log(stellar mass) (⁠|${\rm M}_{\odot }$|⁠)log(sSFR) (⁠|${\rm yr}^{-1}$|⁠)|$\chi ^2$|
Scenario 1 (burst age = 50 Myr)–2.587.06–9.640.22
Scenario 2 (burst age = 100 Myr)–2.837.08–9.910.44
Scenario 3 (burst age = 5 Myr)–2.956.64–9.591.74
Table 3.

Key parameters of different SED fits to the host of SN 2023tsz, with different SFH burst age parametrizations. The chosen burst age for the best fit (i.e. the lowest reduced chi-squared) is given with the model.

Modellog(SFR) (⁠|${\rm M}_{\odot } \, {\rm yr}^{-1}$|⁠)log(stellar mass) (⁠|${\rm M}_{\odot }$|⁠)log(sSFR) (⁠|${\rm yr}^{-1}$|⁠)|$\chi ^2$|
Scenario 1 (burst age = 50 Myr)–2.587.06–9.640.22
Scenario 2 (burst age = 100 Myr)–2.837.08–9.910.44
Scenario 3 (burst age = 5 Myr)–2.956.64–9.591.74
Modellog(SFR) (⁠|${\rm M}_{\odot } \, {\rm yr}^{-1}$|⁠)log(stellar mass) (⁠|${\rm M}_{\odot }$|⁠)log(sSFR) (⁠|${\rm yr}^{-1}$|⁠)|$\chi ^2$|
Scenario 1 (burst age = 50 Myr)–2.587.06–9.640.22
Scenario 2 (burst age = 100 Myr)–2.837.08–9.910.44
Scenario 3 (burst age = 5 Myr)–2.956.64–9.591.74
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close