Table 1.

Default values for the comparison data.

GroupParameterDefault valueNotes
ObservationLength of observation (s)2048
Time resolution (s)0.03125|$=2^{-5}$|
Band AMean count rate (cts s−1)1000
Fractional RMS (per cent)0.31
Red noise? (Y/N)YSee footnote 1
Poisson noise? (Y/N)Y
Readout noise? (Y/N)Y4.5 counts
Scintillation noise? (Y/N)N
Band BMean count rate (cts s−1)5000 –
Fractional RMS (per cent)0.11
Red noise? (Y/N)YSee footnote 1
Poisson noise? (Y/N)Y
Readout noise? (Y/N)Y4.5 counts
Scintillation noise? (Y/N)YSee footnote 2
FourierPower spectra modelLorenztiansSee Table 2
Lag modelPhaseSee Table 3
PlottingCF Range (s)30
CF Binning0
Fourier segment length (Bins)|$2^{12}$|
Fourier rebinning factor1.3
Reference frequency (Hz)1See footnote 3
GroupParameterDefault valueNotes
ObservationLength of observation (s)2048
Time resolution (s)0.03125|$=2^{-5}$|
Band AMean count rate (cts s−1)1000
Fractional RMS (per cent)0.31
Red noise? (Y/N)YSee footnote 1
Poisson noise? (Y/N)Y
Readout noise? (Y/N)Y4.5 counts
Scintillation noise? (Y/N)N
Band BMean count rate (cts s−1)5000 –
Fractional RMS (per cent)0.11
Red noise? (Y/N)YSee footnote 1
Poisson noise? (Y/N)Y
Readout noise? (Y/N)Y4.5 counts
Scintillation noise? (Y/N)YSee footnote 2
FourierPower spectra modelLorenztiansSee Table 2
Lag modelPhaseSee Table 3
PlottingCF Range (s)30
CF Binning0
Fourier segment length (Bins)|$2^{12}$|
Fourier rebinning factor1.3
Reference frequency (Hz)1See footnote 3

Notes. 1 For Band A and B, the fractional RMS of the red noise is 0.2 and 0.03, respectively, analogous to red noise from X-rays and optical. The slope of the red noise is -2 for both.

2 Using reasonable values, analogous to the new technology telescope (NTT) at La Silla, Chile (Tarenghi & Wilson 1989):

Telescope diameter = 3.58 m; Telescope altitude = 2400 m; Exposure time = Time resolution-1.5 ms (i.e. ‘Deadtime’ of 1.5 ms); Target altitude = 40|$^\circ$|⁠; Turbulence height = 8000; Empirical coefficient C|$_{Y}$| = 1.5.

3 Frequency at which the phase lag is be assumed to be correct (i.e. not shifted by |$\pm 2\pi$|⁠)

Table 1.

Default values for the comparison data.

GroupParameterDefault valueNotes
ObservationLength of observation (s)2048
Time resolution (s)0.03125|$=2^{-5}$|
Band AMean count rate (cts s−1)1000
Fractional RMS (per cent)0.31
Red noise? (Y/N)YSee footnote 1
Poisson noise? (Y/N)Y
Readout noise? (Y/N)Y4.5 counts
Scintillation noise? (Y/N)N
Band BMean count rate (cts s−1)5000 –
Fractional RMS (per cent)0.11
Red noise? (Y/N)YSee footnote 1
Poisson noise? (Y/N)Y
Readout noise? (Y/N)Y4.5 counts
Scintillation noise? (Y/N)YSee footnote 2
FourierPower spectra modelLorenztiansSee Table 2
Lag modelPhaseSee Table 3
PlottingCF Range (s)30
CF Binning0
Fourier segment length (Bins)|$2^{12}$|
Fourier rebinning factor1.3
Reference frequency (Hz)1See footnote 3
GroupParameterDefault valueNotes
ObservationLength of observation (s)2048
Time resolution (s)0.03125|$=2^{-5}$|
Band AMean count rate (cts s−1)1000
Fractional RMS (per cent)0.31
Red noise? (Y/N)YSee footnote 1
Poisson noise? (Y/N)Y
Readout noise? (Y/N)Y4.5 counts
Scintillation noise? (Y/N)N
Band BMean count rate (cts s−1)5000 –
Fractional RMS (per cent)0.11
Red noise? (Y/N)YSee footnote 1
Poisson noise? (Y/N)Y
Readout noise? (Y/N)Y4.5 counts
Scintillation noise? (Y/N)YSee footnote 2
FourierPower spectra modelLorenztiansSee Table 2
Lag modelPhaseSee Table 3
PlottingCF Range (s)30
CF Binning0
Fourier segment length (Bins)|$2^{12}$|
Fourier rebinning factor1.3
Reference frequency (Hz)1See footnote 3

Notes. 1 For Band A and B, the fractional RMS of the red noise is 0.2 and 0.03, respectively, analogous to red noise from X-rays and optical. The slope of the red noise is -2 for both.

2 Using reasonable values, analogous to the new technology telescope (NTT) at La Silla, Chile (Tarenghi & Wilson 1989):

Telescope diameter = 3.58 m; Telescope altitude = 2400 m; Exposure time = Time resolution-1.5 ms (i.e. ‘Deadtime’ of 1.5 ms); Target altitude = 40|$^\circ$|⁠; Turbulence height = 8000; Empirical coefficient C|$_{Y}$| = 1.5.

3 Frequency at which the phase lag is be assumed to be correct (i.e. not shifted by |$\pm 2\pi$|⁠)

Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close