Table 1.

Predicted fluxes for the 10 brightest lines in the MIRI and NIRSpec ranges for a |$1{{\rm \, {\rm M}_{\odot }}{\rm \, yr}^{-1}\, }$| cooling flow in the Centaurus cluster, from the simulations shown in Fig. 5. The first three columns give the results for the flow stopping at 10|$^5$| K, and the remaining groups stop at 10|$^4$| and 10|$^3$| K. The first column indicates the species (Ne 6 is Ne vi). The second column gives the wavelength in microns, except for the first two in Angstroms. The third column is the line flux (erg cm|$^{-2}$| s|$^{-1}$|⁠). Low-ionization lines are absent from the flow that stops at 10|$^5$| K, but are among the strongest lines in the IR spectrum for the flow that extends down to 10|$^3$| K. For Centaurus, all fluxes should be multiplied by 14 if the flow is steady and persistent, based on the RGS fits discussed in Section 2.

 T = 10|$^5$| K   T = 10|$^4$| K   T = 10|$^3$| K 
Fe1715.0130A2.52E−14 Fe1715.0130A2.52E−14 Fe1715.0130A2.52E−14
Fe1715.2620A6.81E−15 Fe1715.2620A6.81E−15 Fe1715.2620A6.81E−15
     NIRSpec     
S 89.91E−019.62E−18 Fe131.074611.49E−16 C 19.85E-015.70E−17
He 21.012351.10E−17 Fe131.07987.85E−17 Fe131.074621.52E−16
Fe131.074621.52E−16 S 91.251961.60E−17 Fe131.079788.01E−17
Fe131.079788.01E−17 S 111.392322.84E−17 S 111.392322.84E−17
S 111.392322.84E−17 Si101.430086.10E−17 Si101.430086.10E−17
Si101.430086.10E−17 S 111.919584.80E−17 Fe 21.643556.10E−17
S 111.919584.80E−17 Si 72.480711.61E−17 S 111.919584.80E−17
Si 92.583943.15E−17 Si 92.583943.15E−17 Si 92.583943.15E−17
Mg 83.027642.82E−17 Mg 83.027642.83E−17 Mg 83.027642.82E−17
Si 93.92824.71E−17 Si 93.92824.70E−17 Si 93.92824.71E−17
     MIRI     
Fe 85.445141.56E−17 Fe 25.338711.20E−17 Fe 25.338711.10E−16
Mg 75.49271.10E−17 Fe 85.445141.56E−17 Fe 85.445141.56E−17
Mg 55.6073.28E−18 Mg 75.49271.10E−17 Ne 67.650193.09E−17
Ne 67.650193.09E−17 Ne 67.650193.09E−17 Mg 79.030941.46E−17
Mg 79.030941.46E−17 Mg 79.030941.46E−17 Ne 212.81011.99E−17
Fe 79.507637.98E−18 Ne 524.31091.13E−17 Fe 217.93111.36E−17
Ne 514.31788.72E−18 O 425.88632.96E−17 O 425.88632.96E−17
Ne 524.31091.13E−17 Si 234.80461.38E−17 Fe 225.98135.17E−17
O 425.88632.65E−17 O 351.80049.13E−18 Si 234.80461.43E−16
O 388.33232.93E−18 O 388.33231.16E−17 O 163.16792.63E−17
 T = 10|$^5$| K   T = 10|$^4$| K   T = 10|$^3$| K 
Fe1715.0130A2.52E−14 Fe1715.0130A2.52E−14 Fe1715.0130A2.52E−14
Fe1715.2620A6.81E−15 Fe1715.2620A6.81E−15 Fe1715.2620A6.81E−15
     NIRSpec     
S 89.91E−019.62E−18 Fe131.074611.49E−16 C 19.85E-015.70E−17
He 21.012351.10E−17 Fe131.07987.85E−17 Fe131.074621.52E−16
Fe131.074621.52E−16 S 91.251961.60E−17 Fe131.079788.01E−17
Fe131.079788.01E−17 S 111.392322.84E−17 S 111.392322.84E−17
S 111.392322.84E−17 Si101.430086.10E−17 Si101.430086.10E−17
Si101.430086.10E−17 S 111.919584.80E−17 Fe 21.643556.10E−17
S 111.919584.80E−17 Si 72.480711.61E−17 S 111.919584.80E−17
Si 92.583943.15E−17 Si 92.583943.15E−17 Si 92.583943.15E−17
Mg 83.027642.82E−17 Mg 83.027642.83E−17 Mg 83.027642.82E−17
Si 93.92824.71E−17 Si 93.92824.70E−17 Si 93.92824.71E−17
     MIRI     
Fe 85.445141.56E−17 Fe 25.338711.20E−17 Fe 25.338711.10E−16
Mg 75.49271.10E−17 Fe 85.445141.56E−17 Fe 85.445141.56E−17
Mg 55.6073.28E−18 Mg 75.49271.10E−17 Ne 67.650193.09E−17
Ne 67.650193.09E−17 Ne 67.650193.09E−17 Mg 79.030941.46E−17
Mg 79.030941.46E−17 Mg 79.030941.46E−17 Ne 212.81011.99E−17
Fe 79.507637.98E−18 Ne 524.31091.13E−17 Fe 217.93111.36E−17
Ne 514.31788.72E−18 O 425.88632.96E−17 O 425.88632.96E−17
Ne 524.31091.13E−17 Si 234.80461.38E−17 Fe 225.98135.17E−17
O 425.88632.65E−17 O 351.80049.13E−18 Si 234.80461.43E−16
O 388.33232.93E−18 O 388.33231.16E−17 O 163.16792.63E−17
Table 1.

Predicted fluxes for the 10 brightest lines in the MIRI and NIRSpec ranges for a |$1{{\rm \, {\rm M}_{\odot }}{\rm \, yr}^{-1}\, }$| cooling flow in the Centaurus cluster, from the simulations shown in Fig. 5. The first three columns give the results for the flow stopping at 10|$^5$| K, and the remaining groups stop at 10|$^4$| and 10|$^3$| K. The first column indicates the species (Ne 6 is Ne vi). The second column gives the wavelength in microns, except for the first two in Angstroms. The third column is the line flux (erg cm|$^{-2}$| s|$^{-1}$|⁠). Low-ionization lines are absent from the flow that stops at 10|$^5$| K, but are among the strongest lines in the IR spectrum for the flow that extends down to 10|$^3$| K. For Centaurus, all fluxes should be multiplied by 14 if the flow is steady and persistent, based on the RGS fits discussed in Section 2.

 T = 10|$^5$| K   T = 10|$^4$| K   T = 10|$^3$| K 
Fe1715.0130A2.52E−14 Fe1715.0130A2.52E−14 Fe1715.0130A2.52E−14
Fe1715.2620A6.81E−15 Fe1715.2620A6.81E−15 Fe1715.2620A6.81E−15
     NIRSpec     
S 89.91E−019.62E−18 Fe131.074611.49E−16 C 19.85E-015.70E−17
He 21.012351.10E−17 Fe131.07987.85E−17 Fe131.074621.52E−16
Fe131.074621.52E−16 S 91.251961.60E−17 Fe131.079788.01E−17
Fe131.079788.01E−17 S 111.392322.84E−17 S 111.392322.84E−17
S 111.392322.84E−17 Si101.430086.10E−17 Si101.430086.10E−17
Si101.430086.10E−17 S 111.919584.80E−17 Fe 21.643556.10E−17
S 111.919584.80E−17 Si 72.480711.61E−17 S 111.919584.80E−17
Si 92.583943.15E−17 Si 92.583943.15E−17 Si 92.583943.15E−17
Mg 83.027642.82E−17 Mg 83.027642.83E−17 Mg 83.027642.82E−17
Si 93.92824.71E−17 Si 93.92824.70E−17 Si 93.92824.71E−17
     MIRI     
Fe 85.445141.56E−17 Fe 25.338711.20E−17 Fe 25.338711.10E−16
Mg 75.49271.10E−17 Fe 85.445141.56E−17 Fe 85.445141.56E−17
Mg 55.6073.28E−18 Mg 75.49271.10E−17 Ne 67.650193.09E−17
Ne 67.650193.09E−17 Ne 67.650193.09E−17 Mg 79.030941.46E−17
Mg 79.030941.46E−17 Mg 79.030941.46E−17 Ne 212.81011.99E−17
Fe 79.507637.98E−18 Ne 524.31091.13E−17 Fe 217.93111.36E−17
Ne 514.31788.72E−18 O 425.88632.96E−17 O 425.88632.96E−17
Ne 524.31091.13E−17 Si 234.80461.38E−17 Fe 225.98135.17E−17
O 425.88632.65E−17 O 351.80049.13E−18 Si 234.80461.43E−16
O 388.33232.93E−18 O 388.33231.16E−17 O 163.16792.63E−17
 T = 10|$^5$| K   T = 10|$^4$| K   T = 10|$^3$| K 
Fe1715.0130A2.52E−14 Fe1715.0130A2.52E−14 Fe1715.0130A2.52E−14
Fe1715.2620A6.81E−15 Fe1715.2620A6.81E−15 Fe1715.2620A6.81E−15
     NIRSpec     
S 89.91E−019.62E−18 Fe131.074611.49E−16 C 19.85E-015.70E−17
He 21.012351.10E−17 Fe131.07987.85E−17 Fe131.074621.52E−16
Fe131.074621.52E−16 S 91.251961.60E−17 Fe131.079788.01E−17
Fe131.079788.01E−17 S 111.392322.84E−17 S 111.392322.84E−17
S 111.392322.84E−17 Si101.430086.10E−17 Si101.430086.10E−17
Si101.430086.10E−17 S 111.919584.80E−17 Fe 21.643556.10E−17
S 111.919584.80E−17 Si 72.480711.61E−17 S 111.919584.80E−17
Si 92.583943.15E−17 Si 92.583943.15E−17 Si 92.583943.15E−17
Mg 83.027642.82E−17 Mg 83.027642.83E−17 Mg 83.027642.82E−17
Si 93.92824.71E−17 Si 93.92824.70E−17 Si 93.92824.71E−17
     MIRI     
Fe 85.445141.56E−17 Fe 25.338711.20E−17 Fe 25.338711.10E−16
Mg 75.49271.10E−17 Fe 85.445141.56E−17 Fe 85.445141.56E−17
Mg 55.6073.28E−18 Mg 75.49271.10E−17 Ne 67.650193.09E−17
Ne 67.650193.09E−17 Ne 67.650193.09E−17 Mg 79.030941.46E−17
Mg 79.030941.46E−17 Mg 79.030941.46E−17 Ne 212.81011.99E−17
Fe 79.507637.98E−18 Ne 524.31091.13E−17 Fe 217.93111.36E−17
Ne 514.31788.72E−18 O 425.88632.96E−17 O 425.88632.96E−17
Ne 524.31091.13E−17 Si 234.80461.38E−17 Fe 225.98135.17E−17
O 425.88632.65E−17 O 351.80049.13E−18 Si 234.80461.43E−16
O 388.33232.93E−18 O 388.33231.16E−17 O 163.16792.63E−17
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close