Table B5.

3D forced bounce simulations, in which bouncing motion was driven using a time-dependent vertical gravitational acceleration of the form |$g_{\text{eff,z}} = -\Omega ^2 z (1 + a \cos {\omega t})$|⁠, where |$a$| is the dimensionless forcing amplitude, and |$\omega$| is the forcing frequency (in units of the local orbital angular frequency |$\Omega$|⁠). Note that |$\Delta T$| is the interval (in orbits) between bounces measured directly from the simulation – it should correspond to the inverse of the forcing frequency. All simulations were run for 100–200 orbits, at fixed Reynolds number of |$\text{Re}=4687$|⁠, and used reflective BCs in the vertical direction.

RunBox sizeResolution|$H(0)/H_0$||$\omega /\Omega$||$a$||$\Delta T$|/orb|$s/\Omega$||$s_{\text{th}}/\Omega$|
ForcedBounce1.0[4,4,12]|$32/H_0$|0.91.00.11.00.0120.014
ForcedBounce1.3[8,4,12]|$32/H_0$|0.71.30.10.7780.0410.055
ForcedBounce1.41[8,4,12]|$32/H_0$|0.4|$\sqrt{2}$|0.10.7080.1500.162
ForcedBounce1.6[15,4,12]|$32/H_0$|1.21.60.10.6220.0330.041
ForcedBounce1.8[30,4,12]|$32/H_0$|1.11.80.10.5540.0190.020
ForcedBounce2.0[30,4,12]|$32/H_0$|1.052.00.10.50.0070.011
RunBox sizeResolution|$H(0)/H_0$||$\omega /\Omega$||$a$||$\Delta T$|/orb|$s/\Omega$||$s_{\text{th}}/\Omega$|
ForcedBounce1.0[4,4,12]|$32/H_0$|0.91.00.11.00.0120.014
ForcedBounce1.3[8,4,12]|$32/H_0$|0.71.30.10.7780.0410.055
ForcedBounce1.41[8,4,12]|$32/H_0$|0.4|$\sqrt{2}$|0.10.7080.1500.162
ForcedBounce1.6[15,4,12]|$32/H_0$|1.21.60.10.6220.0330.041
ForcedBounce1.8[30,4,12]|$32/H_0$|1.11.80.10.5540.0190.020
ForcedBounce2.0[30,4,12]|$32/H_0$|1.052.00.10.50.0070.011
Table B5.

3D forced bounce simulations, in which bouncing motion was driven using a time-dependent vertical gravitational acceleration of the form |$g_{\text{eff,z}} = -\Omega ^2 z (1 + a \cos {\omega t})$|⁠, where |$a$| is the dimensionless forcing amplitude, and |$\omega$| is the forcing frequency (in units of the local orbital angular frequency |$\Omega$|⁠). Note that |$\Delta T$| is the interval (in orbits) between bounces measured directly from the simulation – it should correspond to the inverse of the forcing frequency. All simulations were run for 100–200 orbits, at fixed Reynolds number of |$\text{Re}=4687$|⁠, and used reflective BCs in the vertical direction.

RunBox sizeResolution|$H(0)/H_0$||$\omega /\Omega$||$a$||$\Delta T$|/orb|$s/\Omega$||$s_{\text{th}}/\Omega$|
ForcedBounce1.0[4,4,12]|$32/H_0$|0.91.00.11.00.0120.014
ForcedBounce1.3[8,4,12]|$32/H_0$|0.71.30.10.7780.0410.055
ForcedBounce1.41[8,4,12]|$32/H_0$|0.4|$\sqrt{2}$|0.10.7080.1500.162
ForcedBounce1.6[15,4,12]|$32/H_0$|1.21.60.10.6220.0330.041
ForcedBounce1.8[30,4,12]|$32/H_0$|1.11.80.10.5540.0190.020
ForcedBounce2.0[30,4,12]|$32/H_0$|1.052.00.10.50.0070.011
RunBox sizeResolution|$H(0)/H_0$||$\omega /\Omega$||$a$||$\Delta T$|/orb|$s/\Omega$||$s_{\text{th}}/\Omega$|
ForcedBounce1.0[4,4,12]|$32/H_0$|0.91.00.11.00.0120.014
ForcedBounce1.3[8,4,12]|$32/H_0$|0.71.30.10.7780.0410.055
ForcedBounce1.41[8,4,12]|$32/H_0$|0.4|$\sqrt{2}$|0.10.7080.1500.162
ForcedBounce1.6[15,4,12]|$32/H_0$|1.21.60.10.6220.0330.041
ForcedBounce1.8[30,4,12]|$32/H_0$|1.11.80.10.5540.0190.020
ForcedBounce2.0[30,4,12]|$32/H_0$|1.052.00.10.50.0070.011
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close