Accuracy and misinference errors of uni- and multivariate evaluations of graded ground-truth models of brain function of single source region and double source regions
Inference method . | Accuracy % . | Accuracy weighted % . | Sensitivity % . | Specificity % . | Misinference error % . |
---|---|---|---|---|---|
Single source graded | |||||
LSC (Fig. 4A) | 29 | 5 | 100 | 27 | 91 |
LSM (Fig. 4B) LSM_vc | 46 62 | 8 13 | 100 100 | 45 61 | 87 83 |
MAPP (Fig. 4C) | 96 | 94 | 100 | 95 | 2 |
MSA (Fig. 4D) | 95 | 89 | 100 | 95 | 7 |
Double source graded synergistic | |||||
LSC | 19 | 19 | 100 | 15 | 89 |
LSM | 33 | 33 | 100 | 30 | 87 |
MAPP | 53 | 53 | 100 | 50 | 8 |
MSA | 59 | 59 | 100 | 52 | 18 |
Double source graded redundant | |||||
LSC | 19 | 19 | 100 | 15 | 89 |
LSM | 33 | 33 | 100 | 30 | 87 |
MAPP | 52 | 52 | 100 | 50 | 9 |
MSA | 64 | 64 | 100 | 62 | 19 |
Double source graded mutual inhibition | |||||
LSC | 23 | 23 | 99 | 20 | 89 |
LSM | 45 | 45 | 89 | 43 | 89 |
MAPP | 79 | 79 | 68 | 79 | 17 |
MSA | 94 | 93 | 85 | 94 | 21 |
Inference method . | Accuracy % . | Accuracy weighted % . | Sensitivity % . | Specificity % . | Misinference error % . |
---|---|---|---|---|---|
Single source graded | |||||
LSC (Fig. 4A) | 29 | 5 | 100 | 27 | 91 |
LSM (Fig. 4B) LSM_vc | 46 62 | 8 13 | 100 100 | 45 61 | 87 83 |
MAPP (Fig. 4C) | 96 | 94 | 100 | 95 | 2 |
MSA (Fig. 4D) | 95 | 89 | 100 | 95 | 7 |
Double source graded synergistic | |||||
LSC | 19 | 19 | 100 | 15 | 89 |
LSM | 33 | 33 | 100 | 30 | 87 |
MAPP | 53 | 53 | 100 | 50 | 8 |
MSA | 59 | 59 | 100 | 52 | 18 |
Double source graded redundant | |||||
LSC | 19 | 19 | 100 | 15 | 89 |
LSM | 33 | 33 | 100 | 30 | 87 |
MAPP | 52 | 52 | 100 | 50 | 9 |
MSA | 64 | 64 | 100 | 62 | 19 |
Double source graded mutual inhibition | |||||
LSC | 23 | 23 | 99 | 20 | 89 |
LSM | 45 | 45 | 89 | 43 | 89 |
MAPP | 79 | 79 | 68 | 79 | 17 |
MSA | 94 | 93 | 85 | 94 | 21 |
LSM_vc: LSM volume corrected; TP: true positive; TN: true negative; FP: false positive; FN: false negative. Accuracy = (TP + TN)/(TP + TN + FP + FN); Accuracy_weighted = (TP*(1-var(diag))+TN*(1-sum(off_diag)))/(TP + TN + FP + FN). Sensitivity = TP/(TP + FN); Specificity = TN/(TN + FP); Mis-inference error = sum of all inferred regional contributions beyond the ones of the target/s. All the quantities are computed on the normalized significant values in the matrices (figures instead show all the values in the matrices, without excluding the nonsignificant values). For all simulations, we used a regression tree predictor (default parameters). For all simulations, we considered all the values for the regions not expected to be found by the method (FP and TN).
Accuracy and misinference errors of uni- and multivariate evaluations of graded ground-truth models of brain function of single source region and double source regions
Inference method . | Accuracy % . | Accuracy weighted % . | Sensitivity % . | Specificity % . | Misinference error % . |
---|---|---|---|---|---|
Single source graded | |||||
LSC (Fig. 4A) | 29 | 5 | 100 | 27 | 91 |
LSM (Fig. 4B) LSM_vc | 46 62 | 8 13 | 100 100 | 45 61 | 87 83 |
MAPP (Fig. 4C) | 96 | 94 | 100 | 95 | 2 |
MSA (Fig. 4D) | 95 | 89 | 100 | 95 | 7 |
Double source graded synergistic | |||||
LSC | 19 | 19 | 100 | 15 | 89 |
LSM | 33 | 33 | 100 | 30 | 87 |
MAPP | 53 | 53 | 100 | 50 | 8 |
MSA | 59 | 59 | 100 | 52 | 18 |
Double source graded redundant | |||||
LSC | 19 | 19 | 100 | 15 | 89 |
LSM | 33 | 33 | 100 | 30 | 87 |
MAPP | 52 | 52 | 100 | 50 | 9 |
MSA | 64 | 64 | 100 | 62 | 19 |
Double source graded mutual inhibition | |||||
LSC | 23 | 23 | 99 | 20 | 89 |
LSM | 45 | 45 | 89 | 43 | 89 |
MAPP | 79 | 79 | 68 | 79 | 17 |
MSA | 94 | 93 | 85 | 94 | 21 |
Inference method . | Accuracy % . | Accuracy weighted % . | Sensitivity % . | Specificity % . | Misinference error % . |
---|---|---|---|---|---|
Single source graded | |||||
LSC (Fig. 4A) | 29 | 5 | 100 | 27 | 91 |
LSM (Fig. 4B) LSM_vc | 46 62 | 8 13 | 100 100 | 45 61 | 87 83 |
MAPP (Fig. 4C) | 96 | 94 | 100 | 95 | 2 |
MSA (Fig. 4D) | 95 | 89 | 100 | 95 | 7 |
Double source graded synergistic | |||||
LSC | 19 | 19 | 100 | 15 | 89 |
LSM | 33 | 33 | 100 | 30 | 87 |
MAPP | 53 | 53 | 100 | 50 | 8 |
MSA | 59 | 59 | 100 | 52 | 18 |
Double source graded redundant | |||||
LSC | 19 | 19 | 100 | 15 | 89 |
LSM | 33 | 33 | 100 | 30 | 87 |
MAPP | 52 | 52 | 100 | 50 | 9 |
MSA | 64 | 64 | 100 | 62 | 19 |
Double source graded mutual inhibition | |||||
LSC | 23 | 23 | 99 | 20 | 89 |
LSM | 45 | 45 | 89 | 43 | 89 |
MAPP | 79 | 79 | 68 | 79 | 17 |
MSA | 94 | 93 | 85 | 94 | 21 |
LSM_vc: LSM volume corrected; TP: true positive; TN: true negative; FP: false positive; FN: false negative. Accuracy = (TP + TN)/(TP + TN + FP + FN); Accuracy_weighted = (TP*(1-var(diag))+TN*(1-sum(off_diag)))/(TP + TN + FP + FN). Sensitivity = TP/(TP + FN); Specificity = TN/(TN + FP); Mis-inference error = sum of all inferred regional contributions beyond the ones of the target/s. All the quantities are computed on the normalized significant values in the matrices (figures instead show all the values in the matrices, without excluding the nonsignificant values). For all simulations, we used a regression tree predictor (default parameters). For all simulations, we considered all the values for the regions not expected to be found by the method (FP and TN).
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.