Table 1

Accuracy and misinference errors of uni- and multivariate evaluations of binary ground-truth models of brain function of single source region and double source regions

Inference methodAccuracy %Accuracy weighted %Sensitivity %Specificity %Misinference error %
Single source binary
 LSC (Fig. 3A)3351003192
 LSM (Fig. 3B)
LSM_vc
48
71
8
54
100
100
47
70
88
26
 MAPP (Fig. 3C)1001001001000
 MSA (Fig. 3D)1001001001000
Single source binary and 10% noise
 LSC77111007888
 LSM74111007388
 MAPP9846100986
 MSA9873100984
Double source binary synergistic
 LSC22221001890
 LSM35351003286
 MAPP1001001001000
 MSA1001001001000
Double source binary redundant
 LSC3939883791
 LSM47471004586
 MAPP989899981
 MSA93921009212
Double source binary redundant with 10% noise
 LSC80791007989
 LSM7776997686
 MAPP10010010010095
 MSA98981009823
Double source binary redundant with 50% noise
 LSC7978997890
 LSM7474997386
 MAPP10010010010096
 MSA9796979753
Double source binary mutual inhibition
 LSC4141904092
 LSM4746984485
 MAPP959598951
 MSA959596957
Inference methodAccuracy %Accuracy weighted %Sensitivity %Specificity %Misinference error %
Single source binary
 LSC (Fig. 3A)3351003192
 LSM (Fig. 3B)
LSM_vc
48
71
8
54
100
100
47
70
88
26
 MAPP (Fig. 3C)1001001001000
 MSA (Fig. 3D)1001001001000
Single source binary and 10% noise
 LSC77111007888
 LSM74111007388
 MAPP9846100986
 MSA9873100984
Double source binary synergistic
 LSC22221001890
 LSM35351003286
 MAPP1001001001000
 MSA1001001001000
Double source binary redundant
 LSC3939883791
 LSM47471004586
 MAPP989899981
 MSA93921009212
Double source binary redundant with 10% noise
 LSC80791007989
 LSM7776997686
 MAPP10010010010095
 MSA98981009823
Double source binary redundant with 50% noise
 LSC7978997890
 LSM7474997386
 MAPP10010010010096
 MSA9796979753
Double source binary mutual inhibition
 LSC4141904092
 LSM4746984485
 MAPP959598951
 MSA959596957

LSM_vc: LSM volume corrected; TP: true positive; TN: true negative; FP: false positive; FN: false negative. Accuracy = (TP + TN)/(TP + TN + FP + FN); Accuracy_weighted = (TP*(1-var(diag))+TN*(1-sum(off_diag)))/(TP + TN + FP + FN). Sensitivity = TP/(TP + FN); Specificity = TN/(TN + FP); Mis-inference error = sum of all inferred regional contributions beyond the ones of the target/s. All the quantities are computed on the normalized significant values in the matrices (figures instead show all the values in the matrices, without excluding the nonsignificant values). For the single source binary simulation with noise we used a SVM predictor with linear kernel and cost function = 1, while for all other simulations, we used a regression tree predictor (default parameters). For all simulations without noise, we considered all the values for the regions not expected to be found by the method (FP and TN), whereas for the simulations with noise, we only considered the regions with a contribution higher than 0.001 to avoid all kinds of spurious results.

Table 1

Accuracy and misinference errors of uni- and multivariate evaluations of binary ground-truth models of brain function of single source region and double source regions

Inference methodAccuracy %Accuracy weighted %Sensitivity %Specificity %Misinference error %
Single source binary
 LSC (Fig. 3A)3351003192
 LSM (Fig. 3B)
LSM_vc
48
71
8
54
100
100
47
70
88
26
 MAPP (Fig. 3C)1001001001000
 MSA (Fig. 3D)1001001001000
Single source binary and 10% noise
 LSC77111007888
 LSM74111007388
 MAPP9846100986
 MSA9873100984
Double source binary synergistic
 LSC22221001890
 LSM35351003286
 MAPP1001001001000
 MSA1001001001000
Double source binary redundant
 LSC3939883791
 LSM47471004586
 MAPP989899981
 MSA93921009212
Double source binary redundant with 10% noise
 LSC80791007989
 LSM7776997686
 MAPP10010010010095
 MSA98981009823
Double source binary redundant with 50% noise
 LSC7978997890
 LSM7474997386
 MAPP10010010010096
 MSA9796979753
Double source binary mutual inhibition
 LSC4141904092
 LSM4746984485
 MAPP959598951
 MSA959596957
Inference methodAccuracy %Accuracy weighted %Sensitivity %Specificity %Misinference error %
Single source binary
 LSC (Fig. 3A)3351003192
 LSM (Fig. 3B)
LSM_vc
48
71
8
54
100
100
47
70
88
26
 MAPP (Fig. 3C)1001001001000
 MSA (Fig. 3D)1001001001000
Single source binary and 10% noise
 LSC77111007888
 LSM74111007388
 MAPP9846100986
 MSA9873100984
Double source binary synergistic
 LSC22221001890
 LSM35351003286
 MAPP1001001001000
 MSA1001001001000
Double source binary redundant
 LSC3939883791
 LSM47471004586
 MAPP989899981
 MSA93921009212
Double source binary redundant with 10% noise
 LSC80791007989
 LSM7776997686
 MAPP10010010010095
 MSA98981009823
Double source binary redundant with 50% noise
 LSC7978997890
 LSM7474997386
 MAPP10010010010096
 MSA9796979753
Double source binary mutual inhibition
 LSC4141904092
 LSM4746984485
 MAPP959598951
 MSA959596957

LSM_vc: LSM volume corrected; TP: true positive; TN: true negative; FP: false positive; FN: false negative. Accuracy = (TP + TN)/(TP + TN + FP + FN); Accuracy_weighted = (TP*(1-var(diag))+TN*(1-sum(off_diag)))/(TP + TN + FP + FN). Sensitivity = TP/(TP + FN); Specificity = TN/(TN + FP); Mis-inference error = sum of all inferred regional contributions beyond the ones of the target/s. All the quantities are computed on the normalized significant values in the matrices (figures instead show all the values in the matrices, without excluding the nonsignificant values). For the single source binary simulation with noise we used a SVM predictor with linear kernel and cost function = 1, while for all other simulations, we used a regression tree predictor (default parameters). For all simulations without noise, we considered all the values for the regions not expected to be found by the method (FP and TN), whereas for the simulations with noise, we only considered the regions with a contribution higher than 0.001 to avoid all kinds of spurious results.

Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close