The parameter A fitting results for |$5\times 5~\mathrm{deg^2}$| partial sky light-cones with three different source redshifts and three kinds of line-of-sight directions. |$\frac{|\langle A \rangle -1|}{\sigma (A)}$| can be utilized to quantify the systematic bias in the modelling, where |$\langle A \rangle$| is the average value of A and |$\sigma (A)$| is the standard deviation of A. We use bold font to highlight the bias larger than |$0.5 \sigma$|.
Direction . | . | (1,0,0) . | (1,1,0) . | (1,1,1) . | ||||||
---|---|---|---|---|---|---|---|---|---|---|
statistics . | . | |$\langle A\rangle$| . | |$\sigma (A)$| . | |$\frac{|\langle A\rangle -1|}{\sigma (A)}$| . | |$\langle A\rangle$| . | |$\sigma (A)$| . | |$\frac{|\langle A\rangle -1|}{\sigma (A)}$| . | |$\langle A\rangle$| . | |$\sigma (A)$| . | |$\frac{|\langle A\rangle -1|}{\sigma (A)}$| . |
|$C_{\kappa \kappa }(\ell)$| | |$z_\mathrm{ s} = 1.5$| | 0.974928 | 0.115627 | 0.216835 | 1.006055 | 0.118281 | 0.051191 | 0.984959 | 0.115710 | 0.129985 |
|$z_\mathrm{ s} = 3.0$| | 0.976937 | 0.080271 | 0.287318 | 1.001877 | 0.081253 | 0.023103 | 0.993261 | 0.080433 | 0.083779 | |
|$z_\mathrm{ s} = 1100$| | 0.959066 | 0.060307 | 0.678757 | 0.992844 | 0.061867 | 0.115666 | 0.994603 | 0.061910 | 0.087167 | |
|$\langle \kappa ^2_{\theta } \rangle$| | |$z_\mathrm{ s} = 1.5$| | 0.983280 | 0.089468 | 0.186883 | 1.034505 | 0.093977 | 0.367162 | 0.985125 | 0.089406 | 0.166378 |
|$z_\mathrm{ s} = 3.0$| | 0.979632 | 0.061898 | 0.329055 | 1.020842 | 0.064245 | 0.324409 | 0.989774 | 0.062255 | 0.164258 | |
|$z_\mathrm{ s} = 1100$| | 0.980437 | 0.039573 | 0.494358 | 1.017404 | 0.040917 | 0.425351 | 0.993138 | 0.039938 | 0.171823 | |
|$\langle \kappa ^3_{\theta } \rangle$| | |$z_\mathrm{ s} = 1.5$| | 0.988661 | 0.255906 | 0.044309 | 1.076210 | 0.277321 | 0.274809 | 0.980875 | 0.253020 | 0.075588 |
|$z_\mathrm{ s} = 3.0$| | 0.987609 | 0.236556 | 0.052382 | 1.063988 | 0.251966 | 0.253955 | 0.968756 | 0.229322 | 0.136244 | |
|$z_\mathrm{ s} = 1100$| | 0.910621 | 0.244983 | 0.364838 | 1.038345 | 0.271368 | 0.141303 | 0.940633 | 0.246464 | 0.240873 | |
|$\langle \kappa ^4_{\theta } \rangle$| | |$z_s = 1.5$| | 0.668164 | 0.393678 | 0.842912 | 0.983395 | 0.533746 | 0.031109 | 0.945442 | 0.505685 | 0.107890 |
|$z_\mathrm{ s} = 3.0$| | 0.568817 | 0.212749 | 2.026718 | 0.920131 | 0.300942 | 0.265396 | 0.916459 | 0.295385 | 0.282819 | |
|$z_\mathrm{ s} = 1100$| | 0.683477 | 0.126141 | 2.509281 | 0.950014 | 0.156286 | 0.319838 | 0.924932 | 0.151501 | 0.495497 |
Direction . | . | (1,0,0) . | (1,1,0) . | (1,1,1) . | ||||||
---|---|---|---|---|---|---|---|---|---|---|
statistics . | . | |$\langle A\rangle$| . | |$\sigma (A)$| . | |$\frac{|\langle A\rangle -1|}{\sigma (A)}$| . | |$\langle A\rangle$| . | |$\sigma (A)$| . | |$\frac{|\langle A\rangle -1|}{\sigma (A)}$| . | |$\langle A\rangle$| . | |$\sigma (A)$| . | |$\frac{|\langle A\rangle -1|}{\sigma (A)}$| . |
|$C_{\kappa \kappa }(\ell)$| | |$z_\mathrm{ s} = 1.5$| | 0.974928 | 0.115627 | 0.216835 | 1.006055 | 0.118281 | 0.051191 | 0.984959 | 0.115710 | 0.129985 |
|$z_\mathrm{ s} = 3.0$| | 0.976937 | 0.080271 | 0.287318 | 1.001877 | 0.081253 | 0.023103 | 0.993261 | 0.080433 | 0.083779 | |
|$z_\mathrm{ s} = 1100$| | 0.959066 | 0.060307 | 0.678757 | 0.992844 | 0.061867 | 0.115666 | 0.994603 | 0.061910 | 0.087167 | |
|$\langle \kappa ^2_{\theta } \rangle$| | |$z_\mathrm{ s} = 1.5$| | 0.983280 | 0.089468 | 0.186883 | 1.034505 | 0.093977 | 0.367162 | 0.985125 | 0.089406 | 0.166378 |
|$z_\mathrm{ s} = 3.0$| | 0.979632 | 0.061898 | 0.329055 | 1.020842 | 0.064245 | 0.324409 | 0.989774 | 0.062255 | 0.164258 | |
|$z_\mathrm{ s} = 1100$| | 0.980437 | 0.039573 | 0.494358 | 1.017404 | 0.040917 | 0.425351 | 0.993138 | 0.039938 | 0.171823 | |
|$\langle \kappa ^3_{\theta } \rangle$| | |$z_\mathrm{ s} = 1.5$| | 0.988661 | 0.255906 | 0.044309 | 1.076210 | 0.277321 | 0.274809 | 0.980875 | 0.253020 | 0.075588 |
|$z_\mathrm{ s} = 3.0$| | 0.987609 | 0.236556 | 0.052382 | 1.063988 | 0.251966 | 0.253955 | 0.968756 | 0.229322 | 0.136244 | |
|$z_\mathrm{ s} = 1100$| | 0.910621 | 0.244983 | 0.364838 | 1.038345 | 0.271368 | 0.141303 | 0.940633 | 0.246464 | 0.240873 | |
|$\langle \kappa ^4_{\theta } \rangle$| | |$z_s = 1.5$| | 0.668164 | 0.393678 | 0.842912 | 0.983395 | 0.533746 | 0.031109 | 0.945442 | 0.505685 | 0.107890 |
|$z_\mathrm{ s} = 3.0$| | 0.568817 | 0.212749 | 2.026718 | 0.920131 | 0.300942 | 0.265396 | 0.916459 | 0.295385 | 0.282819 | |
|$z_\mathrm{ s} = 1100$| | 0.683477 | 0.126141 | 2.509281 | 0.950014 | 0.156286 | 0.319838 | 0.924932 | 0.151501 | 0.495497 |
The parameter A fitting results for |$5\times 5~\mathrm{deg^2}$| partial sky light-cones with three different source redshifts and three kinds of line-of-sight directions. |$\frac{|\langle A \rangle -1|}{\sigma (A)}$| can be utilized to quantify the systematic bias in the modelling, where |$\langle A \rangle$| is the average value of A and |$\sigma (A)$| is the standard deviation of A. We use bold font to highlight the bias larger than |$0.5 \sigma$|.
Direction . | . | (1,0,0) . | (1,1,0) . | (1,1,1) . | ||||||
---|---|---|---|---|---|---|---|---|---|---|
statistics . | . | |$\langle A\rangle$| . | |$\sigma (A)$| . | |$\frac{|\langle A\rangle -1|}{\sigma (A)}$| . | |$\langle A\rangle$| . | |$\sigma (A)$| . | |$\frac{|\langle A\rangle -1|}{\sigma (A)}$| . | |$\langle A\rangle$| . | |$\sigma (A)$| . | |$\frac{|\langle A\rangle -1|}{\sigma (A)}$| . |
|$C_{\kappa \kappa }(\ell)$| | |$z_\mathrm{ s} = 1.5$| | 0.974928 | 0.115627 | 0.216835 | 1.006055 | 0.118281 | 0.051191 | 0.984959 | 0.115710 | 0.129985 |
|$z_\mathrm{ s} = 3.0$| | 0.976937 | 0.080271 | 0.287318 | 1.001877 | 0.081253 | 0.023103 | 0.993261 | 0.080433 | 0.083779 | |
|$z_\mathrm{ s} = 1100$| | 0.959066 | 0.060307 | 0.678757 | 0.992844 | 0.061867 | 0.115666 | 0.994603 | 0.061910 | 0.087167 | |
|$\langle \kappa ^2_{\theta } \rangle$| | |$z_\mathrm{ s} = 1.5$| | 0.983280 | 0.089468 | 0.186883 | 1.034505 | 0.093977 | 0.367162 | 0.985125 | 0.089406 | 0.166378 |
|$z_\mathrm{ s} = 3.0$| | 0.979632 | 0.061898 | 0.329055 | 1.020842 | 0.064245 | 0.324409 | 0.989774 | 0.062255 | 0.164258 | |
|$z_\mathrm{ s} = 1100$| | 0.980437 | 0.039573 | 0.494358 | 1.017404 | 0.040917 | 0.425351 | 0.993138 | 0.039938 | 0.171823 | |
|$\langle \kappa ^3_{\theta } \rangle$| | |$z_\mathrm{ s} = 1.5$| | 0.988661 | 0.255906 | 0.044309 | 1.076210 | 0.277321 | 0.274809 | 0.980875 | 0.253020 | 0.075588 |
|$z_\mathrm{ s} = 3.0$| | 0.987609 | 0.236556 | 0.052382 | 1.063988 | 0.251966 | 0.253955 | 0.968756 | 0.229322 | 0.136244 | |
|$z_\mathrm{ s} = 1100$| | 0.910621 | 0.244983 | 0.364838 | 1.038345 | 0.271368 | 0.141303 | 0.940633 | 0.246464 | 0.240873 | |
|$\langle \kappa ^4_{\theta } \rangle$| | |$z_s = 1.5$| | 0.668164 | 0.393678 | 0.842912 | 0.983395 | 0.533746 | 0.031109 | 0.945442 | 0.505685 | 0.107890 |
|$z_\mathrm{ s} = 3.0$| | 0.568817 | 0.212749 | 2.026718 | 0.920131 | 0.300942 | 0.265396 | 0.916459 | 0.295385 | 0.282819 | |
|$z_\mathrm{ s} = 1100$| | 0.683477 | 0.126141 | 2.509281 | 0.950014 | 0.156286 | 0.319838 | 0.924932 | 0.151501 | 0.495497 |
Direction . | . | (1,0,0) . | (1,1,0) . | (1,1,1) . | ||||||
---|---|---|---|---|---|---|---|---|---|---|
statistics . | . | |$\langle A\rangle$| . | |$\sigma (A)$| . | |$\frac{|\langle A\rangle -1|}{\sigma (A)}$| . | |$\langle A\rangle$| . | |$\sigma (A)$| . | |$\frac{|\langle A\rangle -1|}{\sigma (A)}$| . | |$\langle A\rangle$| . | |$\sigma (A)$| . | |$\frac{|\langle A\rangle -1|}{\sigma (A)}$| . |
|$C_{\kappa \kappa }(\ell)$| | |$z_\mathrm{ s} = 1.5$| | 0.974928 | 0.115627 | 0.216835 | 1.006055 | 0.118281 | 0.051191 | 0.984959 | 0.115710 | 0.129985 |
|$z_\mathrm{ s} = 3.0$| | 0.976937 | 0.080271 | 0.287318 | 1.001877 | 0.081253 | 0.023103 | 0.993261 | 0.080433 | 0.083779 | |
|$z_\mathrm{ s} = 1100$| | 0.959066 | 0.060307 | 0.678757 | 0.992844 | 0.061867 | 0.115666 | 0.994603 | 0.061910 | 0.087167 | |
|$\langle \kappa ^2_{\theta } \rangle$| | |$z_\mathrm{ s} = 1.5$| | 0.983280 | 0.089468 | 0.186883 | 1.034505 | 0.093977 | 0.367162 | 0.985125 | 0.089406 | 0.166378 |
|$z_\mathrm{ s} = 3.0$| | 0.979632 | 0.061898 | 0.329055 | 1.020842 | 0.064245 | 0.324409 | 0.989774 | 0.062255 | 0.164258 | |
|$z_\mathrm{ s} = 1100$| | 0.980437 | 0.039573 | 0.494358 | 1.017404 | 0.040917 | 0.425351 | 0.993138 | 0.039938 | 0.171823 | |
|$\langle \kappa ^3_{\theta } \rangle$| | |$z_\mathrm{ s} = 1.5$| | 0.988661 | 0.255906 | 0.044309 | 1.076210 | 0.277321 | 0.274809 | 0.980875 | 0.253020 | 0.075588 |
|$z_\mathrm{ s} = 3.0$| | 0.987609 | 0.236556 | 0.052382 | 1.063988 | 0.251966 | 0.253955 | 0.968756 | 0.229322 | 0.136244 | |
|$z_\mathrm{ s} = 1100$| | 0.910621 | 0.244983 | 0.364838 | 1.038345 | 0.271368 | 0.141303 | 0.940633 | 0.246464 | 0.240873 | |
|$\langle \kappa ^4_{\theta } \rangle$| | |$z_s = 1.5$| | 0.668164 | 0.393678 | 0.842912 | 0.983395 | 0.533746 | 0.031109 | 0.945442 | 0.505685 | 0.107890 |
|$z_\mathrm{ s} = 3.0$| | 0.568817 | 0.212749 | 2.026718 | 0.920131 | 0.300942 | 0.265396 | 0.916459 | 0.295385 | 0.282819 | |
|$z_\mathrm{ s} = 1100$| | 0.683477 | 0.126141 | 2.509281 | 0.950014 | 0.156286 | 0.319838 | 0.924932 | 0.151501 | 0.495497 |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.