Table 1.

The parameter A fitting results for |$5\times 5~\mathrm{deg^2}$| partial sky light-cones with three different source redshifts and three kinds of line-of-sight directions. |$\frac{|\langle A \rangle -1|}{\sigma (A)}$| can be utilized to quantify the systematic bias in the modelling, where |$\langle A \rangle$| is the average value of A and |$\sigma (A)$| is the standard deviation of A. We use bold font to highlight the bias larger than |$0.5 \sigma$|⁠.

Direction(1,0,0)(1,1,0)(1,1,1)
statistics|$\langle A\rangle$||$\sigma (A)$||$\frac{|\langle A\rangle -1|}{\sigma (A)}$||$\langle A\rangle$||$\sigma (A)$||$\frac{|\langle A\rangle -1|}{\sigma (A)}$||$\langle A\rangle$||$\sigma (A)$||$\frac{|\langle A\rangle -1|}{\sigma (A)}$|
|$C_{\kappa \kappa }(\ell)$||$z_\mathrm{ s} = 1.5$|0.9749280.1156270.2168351.0060550.1182810.0511910.9849590.1157100.129985
|$z_\mathrm{ s} = 3.0$|0.9769370.0802710.2873181.0018770.0812530.0231030.9932610.0804330.083779
|$z_\mathrm{ s} = 1100$|0.9590660.0603070.6787570.9928440.0618670.1156660.9946030.0619100.087167
|$\langle \kappa ^2_{\theta } \rangle$||$z_\mathrm{ s} = 1.5$|0.9832800.0894680.1868831.0345050.0939770.3671620.9851250.0894060.166378
|$z_\mathrm{ s} = 3.0$|0.9796320.0618980.3290551.0208420.0642450.3244090.9897740.0622550.164258
|$z_\mathrm{ s} = 1100$|0.9804370.0395730.4943581.0174040.0409170.4253510.9931380.0399380.171823
|$\langle \kappa ^3_{\theta } \rangle$||$z_\mathrm{ s} = 1.5$|0.9886610.2559060.0443091.0762100.2773210.2748090.9808750.2530200.075588
|$z_\mathrm{ s} = 3.0$|0.9876090.2365560.0523821.0639880.2519660.2539550.9687560.2293220.136244
|$z_\mathrm{ s} = 1100$|0.9106210.2449830.3648381.0383450.2713680.1413030.9406330.2464640.240873
|$\langle \kappa ^4_{\theta } \rangle$||$z_s = 1.5$|0.6681640.3936780.8429120.9833950.5337460.0311090.9454420.5056850.107890
|$z_\mathrm{ s} = 3.0$|0.5688170.2127492.0267180.9201310.3009420.2653960.9164590.2953850.282819
|$z_\mathrm{ s} = 1100$|0.6834770.1261412.5092810.9500140.1562860.3198380.9249320.1515010.495497
Direction(1,0,0)(1,1,0)(1,1,1)
statistics|$\langle A\rangle$||$\sigma (A)$||$\frac{|\langle A\rangle -1|}{\sigma (A)}$||$\langle A\rangle$||$\sigma (A)$||$\frac{|\langle A\rangle -1|}{\sigma (A)}$||$\langle A\rangle$||$\sigma (A)$||$\frac{|\langle A\rangle -1|}{\sigma (A)}$|
|$C_{\kappa \kappa }(\ell)$||$z_\mathrm{ s} = 1.5$|0.9749280.1156270.2168351.0060550.1182810.0511910.9849590.1157100.129985
|$z_\mathrm{ s} = 3.0$|0.9769370.0802710.2873181.0018770.0812530.0231030.9932610.0804330.083779
|$z_\mathrm{ s} = 1100$|0.9590660.0603070.6787570.9928440.0618670.1156660.9946030.0619100.087167
|$\langle \kappa ^2_{\theta } \rangle$||$z_\mathrm{ s} = 1.5$|0.9832800.0894680.1868831.0345050.0939770.3671620.9851250.0894060.166378
|$z_\mathrm{ s} = 3.0$|0.9796320.0618980.3290551.0208420.0642450.3244090.9897740.0622550.164258
|$z_\mathrm{ s} = 1100$|0.9804370.0395730.4943581.0174040.0409170.4253510.9931380.0399380.171823
|$\langle \kappa ^3_{\theta } \rangle$||$z_\mathrm{ s} = 1.5$|0.9886610.2559060.0443091.0762100.2773210.2748090.9808750.2530200.075588
|$z_\mathrm{ s} = 3.0$|0.9876090.2365560.0523821.0639880.2519660.2539550.9687560.2293220.136244
|$z_\mathrm{ s} = 1100$|0.9106210.2449830.3648381.0383450.2713680.1413030.9406330.2464640.240873
|$\langle \kappa ^4_{\theta } \rangle$||$z_s = 1.5$|0.6681640.3936780.8429120.9833950.5337460.0311090.9454420.5056850.107890
|$z_\mathrm{ s} = 3.0$|0.5688170.2127492.0267180.9201310.3009420.2653960.9164590.2953850.282819
|$z_\mathrm{ s} = 1100$|0.6834770.1261412.5092810.9500140.1562860.3198380.9249320.1515010.495497
Table 1.

The parameter A fitting results for |$5\times 5~\mathrm{deg^2}$| partial sky light-cones with three different source redshifts and three kinds of line-of-sight directions. |$\frac{|\langle A \rangle -1|}{\sigma (A)}$| can be utilized to quantify the systematic bias in the modelling, where |$\langle A \rangle$| is the average value of A and |$\sigma (A)$| is the standard deviation of A. We use bold font to highlight the bias larger than |$0.5 \sigma$|⁠.

Direction(1,0,0)(1,1,0)(1,1,1)
statistics|$\langle A\rangle$||$\sigma (A)$||$\frac{|\langle A\rangle -1|}{\sigma (A)}$||$\langle A\rangle$||$\sigma (A)$||$\frac{|\langle A\rangle -1|}{\sigma (A)}$||$\langle A\rangle$||$\sigma (A)$||$\frac{|\langle A\rangle -1|}{\sigma (A)}$|
|$C_{\kappa \kappa }(\ell)$||$z_\mathrm{ s} = 1.5$|0.9749280.1156270.2168351.0060550.1182810.0511910.9849590.1157100.129985
|$z_\mathrm{ s} = 3.0$|0.9769370.0802710.2873181.0018770.0812530.0231030.9932610.0804330.083779
|$z_\mathrm{ s} = 1100$|0.9590660.0603070.6787570.9928440.0618670.1156660.9946030.0619100.087167
|$\langle \kappa ^2_{\theta } \rangle$||$z_\mathrm{ s} = 1.5$|0.9832800.0894680.1868831.0345050.0939770.3671620.9851250.0894060.166378
|$z_\mathrm{ s} = 3.0$|0.9796320.0618980.3290551.0208420.0642450.3244090.9897740.0622550.164258
|$z_\mathrm{ s} = 1100$|0.9804370.0395730.4943581.0174040.0409170.4253510.9931380.0399380.171823
|$\langle \kappa ^3_{\theta } \rangle$||$z_\mathrm{ s} = 1.5$|0.9886610.2559060.0443091.0762100.2773210.2748090.9808750.2530200.075588
|$z_\mathrm{ s} = 3.0$|0.9876090.2365560.0523821.0639880.2519660.2539550.9687560.2293220.136244
|$z_\mathrm{ s} = 1100$|0.9106210.2449830.3648381.0383450.2713680.1413030.9406330.2464640.240873
|$\langle \kappa ^4_{\theta } \rangle$||$z_s = 1.5$|0.6681640.3936780.8429120.9833950.5337460.0311090.9454420.5056850.107890
|$z_\mathrm{ s} = 3.0$|0.5688170.2127492.0267180.9201310.3009420.2653960.9164590.2953850.282819
|$z_\mathrm{ s} = 1100$|0.6834770.1261412.5092810.9500140.1562860.3198380.9249320.1515010.495497
Direction(1,0,0)(1,1,0)(1,1,1)
statistics|$\langle A\rangle$||$\sigma (A)$||$\frac{|\langle A\rangle -1|}{\sigma (A)}$||$\langle A\rangle$||$\sigma (A)$||$\frac{|\langle A\rangle -1|}{\sigma (A)}$||$\langle A\rangle$||$\sigma (A)$||$\frac{|\langle A\rangle -1|}{\sigma (A)}$|
|$C_{\kappa \kappa }(\ell)$||$z_\mathrm{ s} = 1.5$|0.9749280.1156270.2168351.0060550.1182810.0511910.9849590.1157100.129985
|$z_\mathrm{ s} = 3.0$|0.9769370.0802710.2873181.0018770.0812530.0231030.9932610.0804330.083779
|$z_\mathrm{ s} = 1100$|0.9590660.0603070.6787570.9928440.0618670.1156660.9946030.0619100.087167
|$\langle \kappa ^2_{\theta } \rangle$||$z_\mathrm{ s} = 1.5$|0.9832800.0894680.1868831.0345050.0939770.3671620.9851250.0894060.166378
|$z_\mathrm{ s} = 3.0$|0.9796320.0618980.3290551.0208420.0642450.3244090.9897740.0622550.164258
|$z_\mathrm{ s} = 1100$|0.9804370.0395730.4943581.0174040.0409170.4253510.9931380.0399380.171823
|$\langle \kappa ^3_{\theta } \rangle$||$z_\mathrm{ s} = 1.5$|0.9886610.2559060.0443091.0762100.2773210.2748090.9808750.2530200.075588
|$z_\mathrm{ s} = 3.0$|0.9876090.2365560.0523821.0639880.2519660.2539550.9687560.2293220.136244
|$z_\mathrm{ s} = 1100$|0.9106210.2449830.3648381.0383450.2713680.1413030.9406330.2464640.240873
|$\langle \kappa ^4_{\theta } \rangle$||$z_s = 1.5$|0.6681640.3936780.8429120.9833950.5337460.0311090.9454420.5056850.107890
|$z_\mathrm{ s} = 3.0$|0.5688170.2127492.0267180.9201310.3009420.2653960.9164590.2953850.282819
|$z_\mathrm{ s} = 1100$|0.6834770.1261412.5092810.9500140.1562860.3198380.9249320.1515010.495497
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close