Best-fitting parameters and |$Q_\star ^{\prime }$| based on transit timing analysis.
System . | Parameters . | Constant period . | Orbital decay . | Acceleration of orbital decay . | |$Q_\star ^{\prime }$| . |
---|---|---|---|---|---|
WASP-12 | |$t_0$| (|$\mathrm{BJD}_{\mathrm{TDB}}$|) | 245 7010.51204(6) | 245 7010.51298(4) | 245 7010.51298(4) | |$(1.6 \pm 0.1) \times 10^5$| |
|$P$| (d) | 1.09141892(4) | 1.09141944(2) | 1.09141948(5) | ||
|$\dot{P}$| | (−9.37 |$\pm$| 0.33) |$\times$||$10^{-10}$| | |$(-9.2\pm 0.4)\times 10^{-10}$| | |||
|$\ddot{P}$| (s−1) | |$(-7 \pm 8)\times 10^{-14}$| | ||||
WASP-43 | |$t_0$| (|$\mathrm{BJD}_{\mathrm{TDB}}$|) | 245 7423.44971(4) | 245 7423.44973(7) | |${\gt} 3.9 \times 10^5$| | |
|$P$| (d) | 0.81347405(2) | 0.81347405(2) | |||
|$\dot{P}$| | (−9 |$\pm$| 51) |$\times$||$10^{-12}$| | ||||
WASP-103 | |$t_0$| (|$\mathrm{BJD}_{\mathrm{TDB}}$|) | 245 7511.94449(3) | 245 7511.94449(3) | |${\gt} 1.18 \times 10^6$| | |
|$P$| (d) | 0.92554540(3) | 0.92554539(6) | |||
|$\dot{P}$| | (2.49 |$\pm$| 9.94) |$\times$||$10^{-11}$| | ||||
HAT-P-23 | |$t_0$| (|$\mathrm{BJD}_{\mathrm{TDB}}$|) | 245 6500.57792(6) | 245 6500.577914(6) | |${\gt} 9.4 \times 10^5$| | |
|$P$| (d) | 1.21288648(4) | 1.21288640(7) | |||
|$\dot{P}$| | (7.42 |$\pm$| 5.77) |$\times$||$10^{-11}$| | ||||
KELT-16 | |$t_0$| (|$\mathrm{BJD}_{\mathrm{TDB}}$|) | 245 8334.45807(8) | 245 8334.45816(11) | |${\gt} 2.2 \times 10^5$| | |
|$P$| (d) | 0.96899282(11) | 0.96899289(12) | |||
|$\dot{P}$| | (−3.94 |$\pm$| 3.12) |$\times$||$10^{-10}$| | ||||
WD 1856+534 | |$t_0$| (|$\mathrm{BJD}_{\mathrm{TDB}}$|) | 245 8779.375083(2) | 245 8779.375085(2) | |${\gt} 5.8 \times 10^{-5}$| | |
|$P$| (d) | 1.40793922(1) | 1.40793913(2) | |||
|$\dot{P}$| | (4.98 |$\pm$| 1.54) |$\times$||$10^{-10}$| | ||||
WTS-2 | |$t_0$| (|$\mathrm{BJD}_{\mathrm{TDB}}$|) | 245 9714.91497(19) | |||
|$P$| (d) | 1.01870539(12) |
System . | Parameters . | Constant period . | Orbital decay . | Acceleration of orbital decay . | |$Q_\star ^{\prime }$| . |
---|---|---|---|---|---|
WASP-12 | |$t_0$| (|$\mathrm{BJD}_{\mathrm{TDB}}$|) | 245 7010.51204(6) | 245 7010.51298(4) | 245 7010.51298(4) | |$(1.6 \pm 0.1) \times 10^5$| |
|$P$| (d) | 1.09141892(4) | 1.09141944(2) | 1.09141948(5) | ||
|$\dot{P}$| | (−9.37 |$\pm$| 0.33) |$\times$||$10^{-10}$| | |$(-9.2\pm 0.4)\times 10^{-10}$| | |||
|$\ddot{P}$| (s−1) | |$(-7 \pm 8)\times 10^{-14}$| | ||||
WASP-43 | |$t_0$| (|$\mathrm{BJD}_{\mathrm{TDB}}$|) | 245 7423.44971(4) | 245 7423.44973(7) | |${\gt} 3.9 \times 10^5$| | |
|$P$| (d) | 0.81347405(2) | 0.81347405(2) | |||
|$\dot{P}$| | (−9 |$\pm$| 51) |$\times$||$10^{-12}$| | ||||
WASP-103 | |$t_0$| (|$\mathrm{BJD}_{\mathrm{TDB}}$|) | 245 7511.94449(3) | 245 7511.94449(3) | |${\gt} 1.18 \times 10^6$| | |
|$P$| (d) | 0.92554540(3) | 0.92554539(6) | |||
|$\dot{P}$| | (2.49 |$\pm$| 9.94) |$\times$||$10^{-11}$| | ||||
HAT-P-23 | |$t_0$| (|$\mathrm{BJD}_{\mathrm{TDB}}$|) | 245 6500.57792(6) | 245 6500.577914(6) | |${\gt} 9.4 \times 10^5$| | |
|$P$| (d) | 1.21288648(4) | 1.21288640(7) | |||
|$\dot{P}$| | (7.42 |$\pm$| 5.77) |$\times$||$10^{-11}$| | ||||
KELT-16 | |$t_0$| (|$\mathrm{BJD}_{\mathrm{TDB}}$|) | 245 8334.45807(8) | 245 8334.45816(11) | |${\gt} 2.2 \times 10^5$| | |
|$P$| (d) | 0.96899282(11) | 0.96899289(12) | |||
|$\dot{P}$| | (−3.94 |$\pm$| 3.12) |$\times$||$10^{-10}$| | ||||
WD 1856+534 | |$t_0$| (|$\mathrm{BJD}_{\mathrm{TDB}}$|) | 245 8779.375083(2) | 245 8779.375085(2) | |${\gt} 5.8 \times 10^{-5}$| | |
|$P$| (d) | 1.40793922(1) | 1.40793913(2) | |||
|$\dot{P}$| | (4.98 |$\pm$| 1.54) |$\times$||$10^{-10}$| | ||||
WTS-2 | |$t_0$| (|$\mathrm{BJD}_{\mathrm{TDB}}$|) | 245 9714.91497(19) | |||
|$P$| (d) | 1.01870539(12) |
Note. The numbers in parentheses are the |$1\sigma$| uncertainties in the last few digits, e.g. 1(4) means |$1 \pm 4$|, 0.44971(4) means |$0.44971 \pm 0.00004$|, and 0.91497(19) means |$0.91497 \pm 0.00019$|. Lower limits of |$Q_\star ^{\prime }$| include uncertainties from |$M_\mathrm{ p}$|, |$M_\star$|, |$R_\star$|, and |$a$|. WASP-12 is the only system where |$Q_\star ^{\prime }$| is a proper measurement.
Best-fitting parameters and |$Q_\star ^{\prime }$| based on transit timing analysis.
System . | Parameters . | Constant period . | Orbital decay . | Acceleration of orbital decay . | |$Q_\star ^{\prime }$| . |
---|---|---|---|---|---|
WASP-12 | |$t_0$| (|$\mathrm{BJD}_{\mathrm{TDB}}$|) | 245 7010.51204(6) | 245 7010.51298(4) | 245 7010.51298(4) | |$(1.6 \pm 0.1) \times 10^5$| |
|$P$| (d) | 1.09141892(4) | 1.09141944(2) | 1.09141948(5) | ||
|$\dot{P}$| | (−9.37 |$\pm$| 0.33) |$\times$||$10^{-10}$| | |$(-9.2\pm 0.4)\times 10^{-10}$| | |||
|$\ddot{P}$| (s−1) | |$(-7 \pm 8)\times 10^{-14}$| | ||||
WASP-43 | |$t_0$| (|$\mathrm{BJD}_{\mathrm{TDB}}$|) | 245 7423.44971(4) | 245 7423.44973(7) | |${\gt} 3.9 \times 10^5$| | |
|$P$| (d) | 0.81347405(2) | 0.81347405(2) | |||
|$\dot{P}$| | (−9 |$\pm$| 51) |$\times$||$10^{-12}$| | ||||
WASP-103 | |$t_0$| (|$\mathrm{BJD}_{\mathrm{TDB}}$|) | 245 7511.94449(3) | 245 7511.94449(3) | |${\gt} 1.18 \times 10^6$| | |
|$P$| (d) | 0.92554540(3) | 0.92554539(6) | |||
|$\dot{P}$| | (2.49 |$\pm$| 9.94) |$\times$||$10^{-11}$| | ||||
HAT-P-23 | |$t_0$| (|$\mathrm{BJD}_{\mathrm{TDB}}$|) | 245 6500.57792(6) | 245 6500.577914(6) | |${\gt} 9.4 \times 10^5$| | |
|$P$| (d) | 1.21288648(4) | 1.21288640(7) | |||
|$\dot{P}$| | (7.42 |$\pm$| 5.77) |$\times$||$10^{-11}$| | ||||
KELT-16 | |$t_0$| (|$\mathrm{BJD}_{\mathrm{TDB}}$|) | 245 8334.45807(8) | 245 8334.45816(11) | |${\gt} 2.2 \times 10^5$| | |
|$P$| (d) | 0.96899282(11) | 0.96899289(12) | |||
|$\dot{P}$| | (−3.94 |$\pm$| 3.12) |$\times$||$10^{-10}$| | ||||
WD 1856+534 | |$t_0$| (|$\mathrm{BJD}_{\mathrm{TDB}}$|) | 245 8779.375083(2) | 245 8779.375085(2) | |${\gt} 5.8 \times 10^{-5}$| | |
|$P$| (d) | 1.40793922(1) | 1.40793913(2) | |||
|$\dot{P}$| | (4.98 |$\pm$| 1.54) |$\times$||$10^{-10}$| | ||||
WTS-2 | |$t_0$| (|$\mathrm{BJD}_{\mathrm{TDB}}$|) | 245 9714.91497(19) | |||
|$P$| (d) | 1.01870539(12) |
System . | Parameters . | Constant period . | Orbital decay . | Acceleration of orbital decay . | |$Q_\star ^{\prime }$| . |
---|---|---|---|---|---|
WASP-12 | |$t_0$| (|$\mathrm{BJD}_{\mathrm{TDB}}$|) | 245 7010.51204(6) | 245 7010.51298(4) | 245 7010.51298(4) | |$(1.6 \pm 0.1) \times 10^5$| |
|$P$| (d) | 1.09141892(4) | 1.09141944(2) | 1.09141948(5) | ||
|$\dot{P}$| | (−9.37 |$\pm$| 0.33) |$\times$||$10^{-10}$| | |$(-9.2\pm 0.4)\times 10^{-10}$| | |||
|$\ddot{P}$| (s−1) | |$(-7 \pm 8)\times 10^{-14}$| | ||||
WASP-43 | |$t_0$| (|$\mathrm{BJD}_{\mathrm{TDB}}$|) | 245 7423.44971(4) | 245 7423.44973(7) | |${\gt} 3.9 \times 10^5$| | |
|$P$| (d) | 0.81347405(2) | 0.81347405(2) | |||
|$\dot{P}$| | (−9 |$\pm$| 51) |$\times$||$10^{-12}$| | ||||
WASP-103 | |$t_0$| (|$\mathrm{BJD}_{\mathrm{TDB}}$|) | 245 7511.94449(3) | 245 7511.94449(3) | |${\gt} 1.18 \times 10^6$| | |
|$P$| (d) | 0.92554540(3) | 0.92554539(6) | |||
|$\dot{P}$| | (2.49 |$\pm$| 9.94) |$\times$||$10^{-11}$| | ||||
HAT-P-23 | |$t_0$| (|$\mathrm{BJD}_{\mathrm{TDB}}$|) | 245 6500.57792(6) | 245 6500.577914(6) | |${\gt} 9.4 \times 10^5$| | |
|$P$| (d) | 1.21288648(4) | 1.21288640(7) | |||
|$\dot{P}$| | (7.42 |$\pm$| 5.77) |$\times$||$10^{-11}$| | ||||
KELT-16 | |$t_0$| (|$\mathrm{BJD}_{\mathrm{TDB}}$|) | 245 8334.45807(8) | 245 8334.45816(11) | |${\gt} 2.2 \times 10^5$| | |
|$P$| (d) | 0.96899282(11) | 0.96899289(12) | |||
|$\dot{P}$| | (−3.94 |$\pm$| 3.12) |$\times$||$10^{-10}$| | ||||
WD 1856+534 | |$t_0$| (|$\mathrm{BJD}_{\mathrm{TDB}}$|) | 245 8779.375083(2) | 245 8779.375085(2) | |${\gt} 5.8 \times 10^{-5}$| | |
|$P$| (d) | 1.40793922(1) | 1.40793913(2) | |||
|$\dot{P}$| | (4.98 |$\pm$| 1.54) |$\times$||$10^{-10}$| | ||||
WTS-2 | |$t_0$| (|$\mathrm{BJD}_{\mathrm{TDB}}$|) | 245 9714.91497(19) | |||
|$P$| (d) | 1.01870539(12) |
Note. The numbers in parentheses are the |$1\sigma$| uncertainties in the last few digits, e.g. 1(4) means |$1 \pm 4$|, 0.44971(4) means |$0.44971 \pm 0.00004$|, and 0.91497(19) means |$0.91497 \pm 0.00019$|. Lower limits of |$Q_\star ^{\prime }$| include uncertainties from |$M_\mathrm{ p}$|, |$M_\star$|, |$R_\star$|, and |$a$|. WASP-12 is the only system where |$Q_\star ^{\prime }$| is a proper measurement.
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.