Table 3.

MCMC results of our RV analysis of V347 Aur. We list the recovered GP and orbital parameters with their error bars (with T|$_{\rm c}$| and T|$_{\rm p}$| denoting the times of inferior conjunction and periastron passage, respectively, a the semimajor axis of the orbit, and |$a_{\rm p}$| and |$a_{\rm a}$| the distances between both components at periastron and apoastron, respectively), as well as the corresponding priors whenever relevant. The last two rows give the |$\chi ^2_{\rm r}$| and the rms of the best fit to our RV data.

ParameterValuePrior
|$\theta _1$| (km s|$^{-1}$|⁠)|$0.22^{+0.07}_{-0.06}$|Mod Jeffreys (⁠|$\sigma _{\rm RV}$|⁠)
|$\theta _2$| (d)|$4.12\pm 0.03$|Gaussian (4.12, 0.2)
|$\theta _3$| (d)300
|$\theta _4$|0.85
|$\theta _5$| (km s|$^{-1}$|⁠)|$0.08\pm 0.06$|Mod Jeffreys (⁠|$\sigma _{\rm RV}$|⁠)
K (km s|$^{-1}$|⁠)|$1.05\pm 0.06$|Mod Jeffreys (⁠|$\sigma _{\rm RV}$|⁠)
|$P_{\rm orb}$| (d)|$154.6\pm 0.7$|Gaussian (155, 5)
T|$_{\rm c}$| (2459000+)|$457.5\pm 3.0$|Gaussian (458, 10)
T|$_{\rm p}$| (2459000+)|$408.0\pm 4.2$|From orbital elements
|$\sqrt{e}\cos \omega$||$0.33\pm 0.08$|Gaussian (0, 1)
|$\sqrt{e}\sin \omega$||$-0.42\pm 0.12$|Gaussian (0, 1)
e|$0.28\pm 0.12$|From |$\sqrt{e}\cos \omega$| and |$\sqrt{e}\sin \omega$|
|$\omega$| (rad)|$-0.91\pm 0.18$|From |$\sqrt{e}\cos \omega$| and |$\sqrt{e}\sin \omega$|
|$M_b \sin i$| (⁠|${\rm M}_{2\!\!_{\mathbf +} }$|⁠)|$12.7\pm 0.7$|From K, |$P_{\rm orb}$| and |$M_{\star }$|
|$M_b$| (⁠|${\rm M}_{2\!\!_{\mathbf +} }$|⁠)|$29.0\pm 1.6$|From |$M_b \sin i$| and i
a (au)|$0.39\pm 0.02$|From |$P_{\rm orb}$|⁠, |$M_{\star }$| and e
|$a_{\rm p}$| (au)|$0.28\pm 0.05$|From a and e
|$a_{\rm a}$| (au)|$0.50\pm 0.05$|From a and e
|$\chi ^2_{\rm r}$|0.93
rms (km s|$^{-1}$|⁠)0.19
ParameterValuePrior
|$\theta _1$| (km s|$^{-1}$|⁠)|$0.22^{+0.07}_{-0.06}$|Mod Jeffreys (⁠|$\sigma _{\rm RV}$|⁠)
|$\theta _2$| (d)|$4.12\pm 0.03$|Gaussian (4.12, 0.2)
|$\theta _3$| (d)300
|$\theta _4$|0.85
|$\theta _5$| (km s|$^{-1}$|⁠)|$0.08\pm 0.06$|Mod Jeffreys (⁠|$\sigma _{\rm RV}$|⁠)
K (km s|$^{-1}$|⁠)|$1.05\pm 0.06$|Mod Jeffreys (⁠|$\sigma _{\rm RV}$|⁠)
|$P_{\rm orb}$| (d)|$154.6\pm 0.7$|Gaussian (155, 5)
T|$_{\rm c}$| (2459000+)|$457.5\pm 3.0$|Gaussian (458, 10)
T|$_{\rm p}$| (2459000+)|$408.0\pm 4.2$|From orbital elements
|$\sqrt{e}\cos \omega$||$0.33\pm 0.08$|Gaussian (0, 1)
|$\sqrt{e}\sin \omega$||$-0.42\pm 0.12$|Gaussian (0, 1)
e|$0.28\pm 0.12$|From |$\sqrt{e}\cos \omega$| and |$\sqrt{e}\sin \omega$|
|$\omega$| (rad)|$-0.91\pm 0.18$|From |$\sqrt{e}\cos \omega$| and |$\sqrt{e}\sin \omega$|
|$M_b \sin i$| (⁠|${\rm M}_{2\!\!_{\mathbf +} }$|⁠)|$12.7\pm 0.7$|From K, |$P_{\rm orb}$| and |$M_{\star }$|
|$M_b$| (⁠|${\rm M}_{2\!\!_{\mathbf +} }$|⁠)|$29.0\pm 1.6$|From |$M_b \sin i$| and i
a (au)|$0.39\pm 0.02$|From |$P_{\rm orb}$|⁠, |$M_{\star }$| and e
|$a_{\rm p}$| (au)|$0.28\pm 0.05$|From a and e
|$a_{\rm a}$| (au)|$0.50\pm 0.05$|From a and e
|$\chi ^2_{\rm r}$|0.93
rms (km s|$^{-1}$|⁠)0.19
Table 3.

MCMC results of our RV analysis of V347 Aur. We list the recovered GP and orbital parameters with their error bars (with T|$_{\rm c}$| and T|$_{\rm p}$| denoting the times of inferior conjunction and periastron passage, respectively, a the semimajor axis of the orbit, and |$a_{\rm p}$| and |$a_{\rm a}$| the distances between both components at periastron and apoastron, respectively), as well as the corresponding priors whenever relevant. The last two rows give the |$\chi ^2_{\rm r}$| and the rms of the best fit to our RV data.

ParameterValuePrior
|$\theta _1$| (km s|$^{-1}$|⁠)|$0.22^{+0.07}_{-0.06}$|Mod Jeffreys (⁠|$\sigma _{\rm RV}$|⁠)
|$\theta _2$| (d)|$4.12\pm 0.03$|Gaussian (4.12, 0.2)
|$\theta _3$| (d)300
|$\theta _4$|0.85
|$\theta _5$| (km s|$^{-1}$|⁠)|$0.08\pm 0.06$|Mod Jeffreys (⁠|$\sigma _{\rm RV}$|⁠)
K (km s|$^{-1}$|⁠)|$1.05\pm 0.06$|Mod Jeffreys (⁠|$\sigma _{\rm RV}$|⁠)
|$P_{\rm orb}$| (d)|$154.6\pm 0.7$|Gaussian (155, 5)
T|$_{\rm c}$| (2459000+)|$457.5\pm 3.0$|Gaussian (458, 10)
T|$_{\rm p}$| (2459000+)|$408.0\pm 4.2$|From orbital elements
|$\sqrt{e}\cos \omega$||$0.33\pm 0.08$|Gaussian (0, 1)
|$\sqrt{e}\sin \omega$||$-0.42\pm 0.12$|Gaussian (0, 1)
e|$0.28\pm 0.12$|From |$\sqrt{e}\cos \omega$| and |$\sqrt{e}\sin \omega$|
|$\omega$| (rad)|$-0.91\pm 0.18$|From |$\sqrt{e}\cos \omega$| and |$\sqrt{e}\sin \omega$|
|$M_b \sin i$| (⁠|${\rm M}_{2\!\!_{\mathbf +} }$|⁠)|$12.7\pm 0.7$|From K, |$P_{\rm orb}$| and |$M_{\star }$|
|$M_b$| (⁠|${\rm M}_{2\!\!_{\mathbf +} }$|⁠)|$29.0\pm 1.6$|From |$M_b \sin i$| and i
a (au)|$0.39\pm 0.02$|From |$P_{\rm orb}$|⁠, |$M_{\star }$| and e
|$a_{\rm p}$| (au)|$0.28\pm 0.05$|From a and e
|$a_{\rm a}$| (au)|$0.50\pm 0.05$|From a and e
|$\chi ^2_{\rm r}$|0.93
rms (km s|$^{-1}$|⁠)0.19
ParameterValuePrior
|$\theta _1$| (km s|$^{-1}$|⁠)|$0.22^{+0.07}_{-0.06}$|Mod Jeffreys (⁠|$\sigma _{\rm RV}$|⁠)
|$\theta _2$| (d)|$4.12\pm 0.03$|Gaussian (4.12, 0.2)
|$\theta _3$| (d)300
|$\theta _4$|0.85
|$\theta _5$| (km s|$^{-1}$|⁠)|$0.08\pm 0.06$|Mod Jeffreys (⁠|$\sigma _{\rm RV}$|⁠)
K (km s|$^{-1}$|⁠)|$1.05\pm 0.06$|Mod Jeffreys (⁠|$\sigma _{\rm RV}$|⁠)
|$P_{\rm orb}$| (d)|$154.6\pm 0.7$|Gaussian (155, 5)
T|$_{\rm c}$| (2459000+)|$457.5\pm 3.0$|Gaussian (458, 10)
T|$_{\rm p}$| (2459000+)|$408.0\pm 4.2$|From orbital elements
|$\sqrt{e}\cos \omega$||$0.33\pm 0.08$|Gaussian (0, 1)
|$\sqrt{e}\sin \omega$||$-0.42\pm 0.12$|Gaussian (0, 1)
e|$0.28\pm 0.12$|From |$\sqrt{e}\cos \omega$| and |$\sqrt{e}\sin \omega$|
|$\omega$| (rad)|$-0.91\pm 0.18$|From |$\sqrt{e}\cos \omega$| and |$\sqrt{e}\sin \omega$|
|$M_b \sin i$| (⁠|${\rm M}_{2\!\!_{\mathbf +} }$|⁠)|$12.7\pm 0.7$|From K, |$P_{\rm orb}$| and |$M_{\star }$|
|$M_b$| (⁠|${\rm M}_{2\!\!_{\mathbf +} }$|⁠)|$29.0\pm 1.6$|From |$M_b \sin i$| and i
a (au)|$0.39\pm 0.02$|From |$P_{\rm orb}$|⁠, |$M_{\star }$| and e
|$a_{\rm p}$| (au)|$0.28\pm 0.05$|From a and e
|$a_{\rm a}$| (au)|$0.50\pm 0.05$|From a and e
|$\chi ^2_{\rm r}$|0.93
rms (km s|$^{-1}$|⁠)0.19
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close