Table 1.

The FN-TC method.

Input: Observed data |$\mathcal{Y}$|⁠, sampling operator |$\mathcal{P}$|⁠, estimated rank |$({{R}_1},{{R}_2},{{R}_3})$| of the mode-|${{{{\bf j}}}_n}$| unfolding matrix, hyperparameters |$\lambda $|⁠;
Output: Reconstructed data |$\mathcal{X}$|⁠;
1. Randomly initialize matrices |${{{{\bf U}}}_n}$| and |${{{{\bf V}}}_n}$|⁠, set parameters |$k = 1,\mu = 0.01,\rho = 1.2,{{\mu }_{\max }} = {{10}^7}$|⁠.
2. If the stopping criterion is met |$k \le 30$|⁠, repeat step 2; if not, proceed to step 3. The detailed process for the k-th iteration is as follows:
a) Update matrix |${{{{\hat{\bf V}}}}_n}$| using Equation (12);
b) Update factor matrix |${{{{\bf U}}}_n}$| using Equation (8);
c) Update factor matrix |${{{{\bf V}}}_n}$| using Equation (10);
d) Update tensor |$\rm {X} $| using Equation (15);
e) Update matrices |${{{{\bf D}}}_n}$| and |${{{{\bf F}}}_n}$| using Equations (16) and (17);
|$\mu = \max ( {\rho \mu ,{{\mu }_{\max }}} )$|⁠;
|$k = k + 1$|⁠;
3. Output the reconstructed data |$\rm {X} $|⁠.
Input: Observed data |$\mathcal{Y}$|⁠, sampling operator |$\mathcal{P}$|⁠, estimated rank |$({{R}_1},{{R}_2},{{R}_3})$| of the mode-|${{{{\bf j}}}_n}$| unfolding matrix, hyperparameters |$\lambda $|⁠;
Output: Reconstructed data |$\mathcal{X}$|⁠;
1. Randomly initialize matrices |${{{{\bf U}}}_n}$| and |${{{{\bf V}}}_n}$|⁠, set parameters |$k = 1,\mu = 0.01,\rho = 1.2,{{\mu }_{\max }} = {{10}^7}$|⁠.
2. If the stopping criterion is met |$k \le 30$|⁠, repeat step 2; if not, proceed to step 3. The detailed process for the k-th iteration is as follows:
a) Update matrix |${{{{\hat{\bf V}}}}_n}$| using Equation (12);
b) Update factor matrix |${{{{\bf U}}}_n}$| using Equation (8);
c) Update factor matrix |${{{{\bf V}}}_n}$| using Equation (10);
d) Update tensor |$\rm {X} $| using Equation (15);
e) Update matrices |${{{{\bf D}}}_n}$| and |${{{{\bf F}}}_n}$| using Equations (16) and (17);
|$\mu = \max ( {\rho \mu ,{{\mu }_{\max }}} )$|⁠;
|$k = k + 1$|⁠;
3. Output the reconstructed data |$\rm {X} $|⁠.
Table 1.

The FN-TC method.

Input: Observed data |$\mathcal{Y}$|⁠, sampling operator |$\mathcal{P}$|⁠, estimated rank |$({{R}_1},{{R}_2},{{R}_3})$| of the mode-|${{{{\bf j}}}_n}$| unfolding matrix, hyperparameters |$\lambda $|⁠;
Output: Reconstructed data |$\mathcal{X}$|⁠;
1. Randomly initialize matrices |${{{{\bf U}}}_n}$| and |${{{{\bf V}}}_n}$|⁠, set parameters |$k = 1,\mu = 0.01,\rho = 1.2,{{\mu }_{\max }} = {{10}^7}$|⁠.
2. If the stopping criterion is met |$k \le 30$|⁠, repeat step 2; if not, proceed to step 3. The detailed process for the k-th iteration is as follows:
a) Update matrix |${{{{\hat{\bf V}}}}_n}$| using Equation (12);
b) Update factor matrix |${{{{\bf U}}}_n}$| using Equation (8);
c) Update factor matrix |${{{{\bf V}}}_n}$| using Equation (10);
d) Update tensor |$\rm {X} $| using Equation (15);
e) Update matrices |${{{{\bf D}}}_n}$| and |${{{{\bf F}}}_n}$| using Equations (16) and (17);
|$\mu = \max ( {\rho \mu ,{{\mu }_{\max }}} )$|⁠;
|$k = k + 1$|⁠;
3. Output the reconstructed data |$\rm {X} $|⁠.
Input: Observed data |$\mathcal{Y}$|⁠, sampling operator |$\mathcal{P}$|⁠, estimated rank |$({{R}_1},{{R}_2},{{R}_3})$| of the mode-|${{{{\bf j}}}_n}$| unfolding matrix, hyperparameters |$\lambda $|⁠;
Output: Reconstructed data |$\mathcal{X}$|⁠;
1. Randomly initialize matrices |${{{{\bf U}}}_n}$| and |${{{{\bf V}}}_n}$|⁠, set parameters |$k = 1,\mu = 0.01,\rho = 1.2,{{\mu }_{\max }} = {{10}^7}$|⁠.
2. If the stopping criterion is met |$k \le 30$|⁠, repeat step 2; if not, proceed to step 3. The detailed process for the k-th iteration is as follows:
a) Update matrix |${{{{\hat{\bf V}}}}_n}$| using Equation (12);
b) Update factor matrix |${{{{\bf U}}}_n}$| using Equation (8);
c) Update factor matrix |${{{{\bf V}}}_n}$| using Equation (10);
d) Update tensor |$\rm {X} $| using Equation (15);
e) Update matrices |${{{{\bf D}}}_n}$| and |${{{{\bf F}}}_n}$| using Equations (16) and (17);
|$\mu = \max ( {\rho \mu ,{{\mu }_{\max }}} )$|⁠;
|$k = k + 1$|⁠;
3. Output the reconstructed data |$\rm {X} $|⁠.
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close