The performance of MIDTI as well as other baseline approaches for predicting DTI under different ratios on Luo’s dataset.a
Models . | 1:1 . | 1:5 . | 1:10 . | ||||||
---|---|---|---|---|---|---|---|---|---|
. | ACC . | AUC . | AUPR . | ACC . | AUC . | AUPR . | ACC . | AUC . | AUPR . |
RF (Pedregosa et al. 2011) | 0.8409 | 0.9016 | 0.9129 | 0.9103 | 0.9093 | 0.7836 | 0.9438 | 0.9176 | 0.7156 |
SVM (Chang and Lin 2011) | 0.7993 | 0.8586 | 0.8111 | 0.9074 | 0.8917 | 0.6962 | 0.9380 | 0.8871 | 0.6078 |
XGBoost (Chen and Guestrin 2016) | 0.8573 | 0.9238 | 0.9323 | 0.7982 | 0.8586 | 0.8111 | 0.9550 | 0.9311 | 0.7864 |
GCN (Kipf and Welling 2016) | 0.8393 | 0.8938 | 0.8758 | 0.9068 | 0.8895 | 0.7100 | 0.9299 | 0.8617 | 0.5817 |
GAT (Veličković et al. 2017) | 0.8219 | 0.8759 | 0.8668 | 0.8710 | 0.8558 | 0.6339 | 0.9268 | 0.8525 | 0.5340 |
DTI-CNN (Peng et al. 2020) | 0.8523 | 0.9262 | 0.9340 | 0.9269 | 0.9281 | 0.8286 | 0.9558 | 0.9319 | 0.7957 |
GCNMDA (Long et al. 2020) | 0.8850 | 0.9424 | 0.9347 | 0.9044 | 0.9354 | 0.7520 | 0.9302 | 0.9423 | 0.6573 |
MVGCN (Fu et al. 2022) | 0.8489 | 0.9042 | 0.9017 | 0.9132 | 0.9209 | 0.7777 | 0.9445 | 0.9163 | 0.6959 |
MMGCN (Tang et al. 2021) | 0.9085 | 0.9556 | 0.9122 | 0.9403 | 0.9671 | 0.8038 | 0.9582 | 0.9715 | 0.7684 |
GraphCDA (Dai et al. 2022) | 0.8796 | 0.9459 | 0.9471 | 0.9221 | 0.9484 | 0.8353 | 0.9377 | 0.9133 | 0.6435 |
DTINet (Luo et al. 2017) | 0.8672 | 0.9390 | 0.9432 | 0.8983 | 0.9017 | 0.8511 | 0.9029 | 0.9003 | 0.7883 |
MIDTI (ours) | 0.9340 | 0.9787 | 0.9701 | 0.9413 | 0.9813 | 0.9075 | 0.9539 | 0.9794 | 0.8431 |
Models . | 1:1 . | 1:5 . | 1:10 . | ||||||
---|---|---|---|---|---|---|---|---|---|
. | ACC . | AUC . | AUPR . | ACC . | AUC . | AUPR . | ACC . | AUC . | AUPR . |
RF (Pedregosa et al. 2011) | 0.8409 | 0.9016 | 0.9129 | 0.9103 | 0.9093 | 0.7836 | 0.9438 | 0.9176 | 0.7156 |
SVM (Chang and Lin 2011) | 0.7993 | 0.8586 | 0.8111 | 0.9074 | 0.8917 | 0.6962 | 0.9380 | 0.8871 | 0.6078 |
XGBoost (Chen and Guestrin 2016) | 0.8573 | 0.9238 | 0.9323 | 0.7982 | 0.8586 | 0.8111 | 0.9550 | 0.9311 | 0.7864 |
GCN (Kipf and Welling 2016) | 0.8393 | 0.8938 | 0.8758 | 0.9068 | 0.8895 | 0.7100 | 0.9299 | 0.8617 | 0.5817 |
GAT (Veličković et al. 2017) | 0.8219 | 0.8759 | 0.8668 | 0.8710 | 0.8558 | 0.6339 | 0.9268 | 0.8525 | 0.5340 |
DTI-CNN (Peng et al. 2020) | 0.8523 | 0.9262 | 0.9340 | 0.9269 | 0.9281 | 0.8286 | 0.9558 | 0.9319 | 0.7957 |
GCNMDA (Long et al. 2020) | 0.8850 | 0.9424 | 0.9347 | 0.9044 | 0.9354 | 0.7520 | 0.9302 | 0.9423 | 0.6573 |
MVGCN (Fu et al. 2022) | 0.8489 | 0.9042 | 0.9017 | 0.9132 | 0.9209 | 0.7777 | 0.9445 | 0.9163 | 0.6959 |
MMGCN (Tang et al. 2021) | 0.9085 | 0.9556 | 0.9122 | 0.9403 | 0.9671 | 0.8038 | 0.9582 | 0.9715 | 0.7684 |
GraphCDA (Dai et al. 2022) | 0.8796 | 0.9459 | 0.9471 | 0.9221 | 0.9484 | 0.8353 | 0.9377 | 0.9133 | 0.6435 |
DTINet (Luo et al. 2017) | 0.8672 | 0.9390 | 0.9432 | 0.8983 | 0.9017 | 0.8511 | 0.9029 | 0.9003 | 0.7883 |
MIDTI (ours) | 0.9340 | 0.9787 | 0.9701 | 0.9413 | 0.9813 | 0.9075 | 0.9539 | 0.9794 | 0.8431 |
The best results are marked in bold and the second best is underlined.
The performance of MIDTI as well as other baseline approaches for predicting DTI under different ratios on Luo’s dataset.a
Models . | 1:1 . | 1:5 . | 1:10 . | ||||||
---|---|---|---|---|---|---|---|---|---|
. | ACC . | AUC . | AUPR . | ACC . | AUC . | AUPR . | ACC . | AUC . | AUPR . |
RF (Pedregosa et al. 2011) | 0.8409 | 0.9016 | 0.9129 | 0.9103 | 0.9093 | 0.7836 | 0.9438 | 0.9176 | 0.7156 |
SVM (Chang and Lin 2011) | 0.7993 | 0.8586 | 0.8111 | 0.9074 | 0.8917 | 0.6962 | 0.9380 | 0.8871 | 0.6078 |
XGBoost (Chen and Guestrin 2016) | 0.8573 | 0.9238 | 0.9323 | 0.7982 | 0.8586 | 0.8111 | 0.9550 | 0.9311 | 0.7864 |
GCN (Kipf and Welling 2016) | 0.8393 | 0.8938 | 0.8758 | 0.9068 | 0.8895 | 0.7100 | 0.9299 | 0.8617 | 0.5817 |
GAT (Veličković et al. 2017) | 0.8219 | 0.8759 | 0.8668 | 0.8710 | 0.8558 | 0.6339 | 0.9268 | 0.8525 | 0.5340 |
DTI-CNN (Peng et al. 2020) | 0.8523 | 0.9262 | 0.9340 | 0.9269 | 0.9281 | 0.8286 | 0.9558 | 0.9319 | 0.7957 |
GCNMDA (Long et al. 2020) | 0.8850 | 0.9424 | 0.9347 | 0.9044 | 0.9354 | 0.7520 | 0.9302 | 0.9423 | 0.6573 |
MVGCN (Fu et al. 2022) | 0.8489 | 0.9042 | 0.9017 | 0.9132 | 0.9209 | 0.7777 | 0.9445 | 0.9163 | 0.6959 |
MMGCN (Tang et al. 2021) | 0.9085 | 0.9556 | 0.9122 | 0.9403 | 0.9671 | 0.8038 | 0.9582 | 0.9715 | 0.7684 |
GraphCDA (Dai et al. 2022) | 0.8796 | 0.9459 | 0.9471 | 0.9221 | 0.9484 | 0.8353 | 0.9377 | 0.9133 | 0.6435 |
DTINet (Luo et al. 2017) | 0.8672 | 0.9390 | 0.9432 | 0.8983 | 0.9017 | 0.8511 | 0.9029 | 0.9003 | 0.7883 |
MIDTI (ours) | 0.9340 | 0.9787 | 0.9701 | 0.9413 | 0.9813 | 0.9075 | 0.9539 | 0.9794 | 0.8431 |
Models . | 1:1 . | 1:5 . | 1:10 . | ||||||
---|---|---|---|---|---|---|---|---|---|
. | ACC . | AUC . | AUPR . | ACC . | AUC . | AUPR . | ACC . | AUC . | AUPR . |
RF (Pedregosa et al. 2011) | 0.8409 | 0.9016 | 0.9129 | 0.9103 | 0.9093 | 0.7836 | 0.9438 | 0.9176 | 0.7156 |
SVM (Chang and Lin 2011) | 0.7993 | 0.8586 | 0.8111 | 0.9074 | 0.8917 | 0.6962 | 0.9380 | 0.8871 | 0.6078 |
XGBoost (Chen and Guestrin 2016) | 0.8573 | 0.9238 | 0.9323 | 0.7982 | 0.8586 | 0.8111 | 0.9550 | 0.9311 | 0.7864 |
GCN (Kipf and Welling 2016) | 0.8393 | 0.8938 | 0.8758 | 0.9068 | 0.8895 | 0.7100 | 0.9299 | 0.8617 | 0.5817 |
GAT (Veličković et al. 2017) | 0.8219 | 0.8759 | 0.8668 | 0.8710 | 0.8558 | 0.6339 | 0.9268 | 0.8525 | 0.5340 |
DTI-CNN (Peng et al. 2020) | 0.8523 | 0.9262 | 0.9340 | 0.9269 | 0.9281 | 0.8286 | 0.9558 | 0.9319 | 0.7957 |
GCNMDA (Long et al. 2020) | 0.8850 | 0.9424 | 0.9347 | 0.9044 | 0.9354 | 0.7520 | 0.9302 | 0.9423 | 0.6573 |
MVGCN (Fu et al. 2022) | 0.8489 | 0.9042 | 0.9017 | 0.9132 | 0.9209 | 0.7777 | 0.9445 | 0.9163 | 0.6959 |
MMGCN (Tang et al. 2021) | 0.9085 | 0.9556 | 0.9122 | 0.9403 | 0.9671 | 0.8038 | 0.9582 | 0.9715 | 0.7684 |
GraphCDA (Dai et al. 2022) | 0.8796 | 0.9459 | 0.9471 | 0.9221 | 0.9484 | 0.8353 | 0.9377 | 0.9133 | 0.6435 |
DTINet (Luo et al. 2017) | 0.8672 | 0.9390 | 0.9432 | 0.8983 | 0.9017 | 0.8511 | 0.9029 | 0.9003 | 0.7883 |
MIDTI (ours) | 0.9340 | 0.9787 | 0.9701 | 0.9413 | 0.9813 | 0.9075 | 0.9539 | 0.9794 | 0.8431 |
The best results are marked in bold and the second best is underlined.
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.