Table 1.

The performance of MIDTI as well as other baseline approaches for predicting DTI under different ratios on Luo’s dataset.a

Models1:1
1:5
1:10
ACCAUCAUPRACCAUCAUPRACCAUCAUPR
RF (Pedregosa et al. 2011)0.84090.90160.91290.91030.90930.78360.94380.91760.7156
SVM (Chang and Lin 2011)0.79930.85860.81110.90740.89170.69620.93800.88710.6078
XGBoost (Chen and Guestrin 2016)0.85730.92380.93230.79820.85860.81110.95500.93110.7864
GCN (Kipf and Welling 2016)0.83930.89380.87580.90680.88950.71000.92990.86170.5817
GAT (Veličković et al. 2017)0.82190.87590.86680.87100.85580.63390.92680.85250.5340
DTI-CNN (Peng et al. 2020)0.85230.92620.93400.92690.92810.82860.95580.93190.7957
GCNMDA (Long et al. 2020)0.88500.94240.93470.90440.93540.75200.93020.94230.6573
MVGCN (Fu et al. 2022)0.84890.90420.90170.91320.92090.77770.94450.91630.6959
MMGCN (Tang et al. 2021)0.90850.95560.91220.94030.96710.80380.95820.97150.7684
GraphCDA (Dai et al. 2022)0.87960.94590.94710.92210.94840.83530.93770.91330.6435
DTINet (Luo et al. 2017)0.86720.93900.94320.89830.90170.85110.90290.90030.7883
MIDTI (ours)0.93400.97870.97010.94130.98130.90750.95390.97940.8431
Models1:1
1:5
1:10
ACCAUCAUPRACCAUCAUPRACCAUCAUPR
RF (Pedregosa et al. 2011)0.84090.90160.91290.91030.90930.78360.94380.91760.7156
SVM (Chang and Lin 2011)0.79930.85860.81110.90740.89170.69620.93800.88710.6078
XGBoost (Chen and Guestrin 2016)0.85730.92380.93230.79820.85860.81110.95500.93110.7864
GCN (Kipf and Welling 2016)0.83930.89380.87580.90680.88950.71000.92990.86170.5817
GAT (Veličković et al. 2017)0.82190.87590.86680.87100.85580.63390.92680.85250.5340
DTI-CNN (Peng et al. 2020)0.85230.92620.93400.92690.92810.82860.95580.93190.7957
GCNMDA (Long et al. 2020)0.88500.94240.93470.90440.93540.75200.93020.94230.6573
MVGCN (Fu et al. 2022)0.84890.90420.90170.91320.92090.77770.94450.91630.6959
MMGCN (Tang et al. 2021)0.90850.95560.91220.94030.96710.80380.95820.97150.7684
GraphCDA (Dai et al. 2022)0.87960.94590.94710.92210.94840.83530.93770.91330.6435
DTINet (Luo et al. 2017)0.86720.93900.94320.89830.90170.85110.90290.90030.7883
MIDTI (ours)0.93400.97870.97010.94130.98130.90750.95390.97940.8431
a

The best results are marked in bold and the second best is underlined.

Table 1.

The performance of MIDTI as well as other baseline approaches for predicting DTI under different ratios on Luo’s dataset.a

Models1:1
1:5
1:10
ACCAUCAUPRACCAUCAUPRACCAUCAUPR
RF (Pedregosa et al. 2011)0.84090.90160.91290.91030.90930.78360.94380.91760.7156
SVM (Chang and Lin 2011)0.79930.85860.81110.90740.89170.69620.93800.88710.6078
XGBoost (Chen and Guestrin 2016)0.85730.92380.93230.79820.85860.81110.95500.93110.7864
GCN (Kipf and Welling 2016)0.83930.89380.87580.90680.88950.71000.92990.86170.5817
GAT (Veličković et al. 2017)0.82190.87590.86680.87100.85580.63390.92680.85250.5340
DTI-CNN (Peng et al. 2020)0.85230.92620.93400.92690.92810.82860.95580.93190.7957
GCNMDA (Long et al. 2020)0.88500.94240.93470.90440.93540.75200.93020.94230.6573
MVGCN (Fu et al. 2022)0.84890.90420.90170.91320.92090.77770.94450.91630.6959
MMGCN (Tang et al. 2021)0.90850.95560.91220.94030.96710.80380.95820.97150.7684
GraphCDA (Dai et al. 2022)0.87960.94590.94710.92210.94840.83530.93770.91330.6435
DTINet (Luo et al. 2017)0.86720.93900.94320.89830.90170.85110.90290.90030.7883
MIDTI (ours)0.93400.97870.97010.94130.98130.90750.95390.97940.8431
Models1:1
1:5
1:10
ACCAUCAUPRACCAUCAUPRACCAUCAUPR
RF (Pedregosa et al. 2011)0.84090.90160.91290.91030.90930.78360.94380.91760.7156
SVM (Chang and Lin 2011)0.79930.85860.81110.90740.89170.69620.93800.88710.6078
XGBoost (Chen and Guestrin 2016)0.85730.92380.93230.79820.85860.81110.95500.93110.7864
GCN (Kipf and Welling 2016)0.83930.89380.87580.90680.88950.71000.92990.86170.5817
GAT (Veličković et al. 2017)0.82190.87590.86680.87100.85580.63390.92680.85250.5340
DTI-CNN (Peng et al. 2020)0.85230.92620.93400.92690.92810.82860.95580.93190.7957
GCNMDA (Long et al. 2020)0.88500.94240.93470.90440.93540.75200.93020.94230.6573
MVGCN (Fu et al. 2022)0.84890.90420.90170.91320.92090.77770.94450.91630.6959
MMGCN (Tang et al. 2021)0.90850.95560.91220.94030.96710.80380.95820.97150.7684
GraphCDA (Dai et al. 2022)0.87960.94590.94710.92210.94840.83530.93770.91330.6435
DTINet (Luo et al. 2017)0.86720.93900.94320.89830.90170.85110.90290.90030.7883
MIDTI (ours)0.93400.97870.97010.94130.98130.90750.95390.97940.8431
a

The best results are marked in bold and the second best is underlined.

Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close