Comparison of simulations with different numbers of node masses and springs per node.
. | Set . | |||||
---|---|---|---|---|---|---|
. | A . | B . | C . | D . | E . | F . |
〈NI〉 | 403.8 | 405.8 | 795.2 | 804.2 | 1597.8 | 1596.2 |
〈NSI/NI〉 | 10.92 | 18.7 | 11.5 | 20.34 | 12.02 | 21.34 |
dI | 0.19 | 0.19 | 0.15 | 0.15 | 0.118 | 0.118 |
ds/dI | 2.3 | 2.8 | 2.2 | 2.8 | 2.3 | 2.8 |
kI | 0.102 | 0.04 | 0.08 | 0.0301 | 0.062 | 0.023 |
γI | 12.858 | 5.05 | 20.0 | 7.48 | 31.3 | 11.5 |
〈qfratio〉 | 1.48 | 1.39 | 1.41 | 1.36 | 1.40 | 1.38 |
σ[qfratio] | 0.069 | 0.052 | 0.053 | 0.026 | 0.030 | 0.012 |
|$\sigma [\dot{a}]/ \langle \dot{a} \rangle$| | 0.061 | 0.064 | 0.055 | 0.024 | 0.026 | 0.0094 |
. | Set . | |||||
---|---|---|---|---|---|---|
. | A . | B . | C . | D . | E . | F . |
〈NI〉 | 403.8 | 405.8 | 795.2 | 804.2 | 1597.8 | 1596.2 |
〈NSI/NI〉 | 10.92 | 18.7 | 11.5 | 20.34 | 12.02 | 21.34 |
dI | 0.19 | 0.19 | 0.15 | 0.15 | 0.118 | 0.118 |
ds/dI | 2.3 | 2.8 | 2.2 | 2.8 | 2.3 | 2.8 |
kI | 0.102 | 0.04 | 0.08 | 0.0301 | 0.062 | 0.023 |
γI | 12.858 | 5.05 | 20.0 | 7.48 | 31.3 | 11.5 |
〈qfratio〉 | 1.48 | 1.39 | 1.41 | 1.36 | 1.40 | 1.38 |
σ[qfratio] | 0.069 | 0.052 | 0.053 | 0.026 | 0.030 | 0.012 |
|$\sigma [\dot{a}]/ \langle \dot{a} \rangle$| | 0.061 | 0.064 | 0.055 | 0.024 | 0.026 | 0.0094 |
Notes. With a0 = 10, M* = 100, n = 0.318, σ0 = −0.4, Po = 4.377, |$\bar{\chi }\sim 0.225$|, EI ∼ 2.3, and τrelax ∼ 0.155.
Each column represents a group of five simulations. From each group of five the mean number of nodes and springs per node are listed in the second and third rows. The rows labelled 〈qfratio〉 and σ[qfratio] give the mean and standard deviations, respectively, of the ratio of the numerically measured to analytically predicted quality function. The bottom row gives the ratio of the standard deviation in the semimajor axis drift rate divided by the means. Each of the means and standard deviations are computed from five simulations. The simulations listed here differ from those described by Tables 1 and 3.
Comparison of simulations with different numbers of node masses and springs per node.
. | Set . | |||||
---|---|---|---|---|---|---|
. | A . | B . | C . | D . | E . | F . |
〈NI〉 | 403.8 | 405.8 | 795.2 | 804.2 | 1597.8 | 1596.2 |
〈NSI/NI〉 | 10.92 | 18.7 | 11.5 | 20.34 | 12.02 | 21.34 |
dI | 0.19 | 0.19 | 0.15 | 0.15 | 0.118 | 0.118 |
ds/dI | 2.3 | 2.8 | 2.2 | 2.8 | 2.3 | 2.8 |
kI | 0.102 | 0.04 | 0.08 | 0.0301 | 0.062 | 0.023 |
γI | 12.858 | 5.05 | 20.0 | 7.48 | 31.3 | 11.5 |
〈qfratio〉 | 1.48 | 1.39 | 1.41 | 1.36 | 1.40 | 1.38 |
σ[qfratio] | 0.069 | 0.052 | 0.053 | 0.026 | 0.030 | 0.012 |
|$\sigma [\dot{a}]/ \langle \dot{a} \rangle$| | 0.061 | 0.064 | 0.055 | 0.024 | 0.026 | 0.0094 |
. | Set . | |||||
---|---|---|---|---|---|---|
. | A . | B . | C . | D . | E . | F . |
〈NI〉 | 403.8 | 405.8 | 795.2 | 804.2 | 1597.8 | 1596.2 |
〈NSI/NI〉 | 10.92 | 18.7 | 11.5 | 20.34 | 12.02 | 21.34 |
dI | 0.19 | 0.19 | 0.15 | 0.15 | 0.118 | 0.118 |
ds/dI | 2.3 | 2.8 | 2.2 | 2.8 | 2.3 | 2.8 |
kI | 0.102 | 0.04 | 0.08 | 0.0301 | 0.062 | 0.023 |
γI | 12.858 | 5.05 | 20.0 | 7.48 | 31.3 | 11.5 |
〈qfratio〉 | 1.48 | 1.39 | 1.41 | 1.36 | 1.40 | 1.38 |
σ[qfratio] | 0.069 | 0.052 | 0.053 | 0.026 | 0.030 | 0.012 |
|$\sigma [\dot{a}]/ \langle \dot{a} \rangle$| | 0.061 | 0.064 | 0.055 | 0.024 | 0.026 | 0.0094 |
Notes. With a0 = 10, M* = 100, n = 0.318, σ0 = −0.4, Po = 4.377, |$\bar{\chi }\sim 0.225$|, EI ∼ 2.3, and τrelax ∼ 0.155.
Each column represents a group of five simulations. From each group of five the mean number of nodes and springs per node are listed in the second and third rows. The rows labelled 〈qfratio〉 and σ[qfratio] give the mean and standard deviations, respectively, of the ratio of the numerically measured to analytically predicted quality function. The bottom row gives the ratio of the standard deviation in the semimajor axis drift rate divided by the means. Each of the means and standard deviations are computed from five simulations. The simulations listed here differ from those described by Tables 1 and 3.
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.