Table 1.

Fitting function and best-fitting parameters for the specific stellar mass accretion rate. See Section 3.4 for details.

Definition|$\dot{m}_{\rm acc, \ast }(M_0, \mu , z) = \frac{1}{M_0}\frac{{\rm d}{M}_{\rm acc}}{{\rm d}\mu \, {\rm d}t}$|
Units(Gyr−1)
|$A(z) \, \left(\frac{M_0}{10^{10}\,{\rm M_{{\odot }}}}\right)^{\alpha (z)} \left[1 + \left(\frac{M_0}{M_0^{\prime }}\right)^{\delta (z)}\right] \mu ^{\beta (z) + \gamma \log _{10}\left(\frac{M_0}{10^{10}\,{\rm M_{{\odot }}}}\right)} \left(\frac{\mu }{1 + 3\mu }\right)$|⁠,
where
Fitting functionA(z) = A0(1 + z)η,
|$\alpha (z) = \alpha _0 (1+z)^{\alpha _1}$|⁠,
|$\beta (z) = \beta _0 (1+z)^{\beta _1}$|⁠,
|$\delta (z) = \delta _0 (1+z)^{\delta _1}$|⁠,
and |$M_0^{\prime } = 2 \times 10^{11} \, \,{\rm M_{{\odot }}}$| is fixed.
log10(A0/Gyr−1)−2.0252 ± 0.0060
η1.5996 ± 0.0146
α00.2013 ± 0.0050
α1−1.4888 ± 0.0540
β0−0.9964 ± 0.0030
β10.1177 ± 0.0030
γ−0.0656 ± 0.0015
δ00.6949 ± 0.0311
δ1−1.7581 ± 0.0675
|$\chi ^2_{\rm red}$|1.21
Definition|$\dot{m}_{\rm acc, \ast }(M_0, \mu , z) = \frac{1}{M_0}\frac{{\rm d}{M}_{\rm acc}}{{\rm d}\mu \, {\rm d}t}$|
Units(Gyr−1)
|$A(z) \, \left(\frac{M_0}{10^{10}\,{\rm M_{{\odot }}}}\right)^{\alpha (z)} \left[1 + \left(\frac{M_0}{M_0^{\prime }}\right)^{\delta (z)}\right] \mu ^{\beta (z) + \gamma \log _{10}\left(\frac{M_0}{10^{10}\,{\rm M_{{\odot }}}}\right)} \left(\frac{\mu }{1 + 3\mu }\right)$|⁠,
where
Fitting functionA(z) = A0(1 + z)η,
|$\alpha (z) = \alpha _0 (1+z)^{\alpha _1}$|⁠,
|$\beta (z) = \beta _0 (1+z)^{\beta _1}$|⁠,
|$\delta (z) = \delta _0 (1+z)^{\delta _1}$|⁠,
and |$M_0^{\prime } = 2 \times 10^{11} \, \,{\rm M_{{\odot }}}$| is fixed.
log10(A0/Gyr−1)−2.0252 ± 0.0060
η1.5996 ± 0.0146
α00.2013 ± 0.0050
α1−1.4888 ± 0.0540
β0−0.9964 ± 0.0030
β10.1177 ± 0.0030
γ−0.0656 ± 0.0015
δ00.6949 ± 0.0311
δ1−1.7581 ± 0.0675
|$\chi ^2_{\rm red}$|1.21
Table 1.

Fitting function and best-fitting parameters for the specific stellar mass accretion rate. See Section 3.4 for details.

Definition|$\dot{m}_{\rm acc, \ast }(M_0, \mu , z) = \frac{1}{M_0}\frac{{\rm d}{M}_{\rm acc}}{{\rm d}\mu \, {\rm d}t}$|
Units(Gyr−1)
|$A(z) \, \left(\frac{M_0}{10^{10}\,{\rm M_{{\odot }}}}\right)^{\alpha (z)} \left[1 + \left(\frac{M_0}{M_0^{\prime }}\right)^{\delta (z)}\right] \mu ^{\beta (z) + \gamma \log _{10}\left(\frac{M_0}{10^{10}\,{\rm M_{{\odot }}}}\right)} \left(\frac{\mu }{1 + 3\mu }\right)$|⁠,
where
Fitting functionA(z) = A0(1 + z)η,
|$\alpha (z) = \alpha _0 (1+z)^{\alpha _1}$|⁠,
|$\beta (z) = \beta _0 (1+z)^{\beta _1}$|⁠,
|$\delta (z) = \delta _0 (1+z)^{\delta _1}$|⁠,
and |$M_0^{\prime } = 2 \times 10^{11} \, \,{\rm M_{{\odot }}}$| is fixed.
log10(A0/Gyr−1)−2.0252 ± 0.0060
η1.5996 ± 0.0146
α00.2013 ± 0.0050
α1−1.4888 ± 0.0540
β0−0.9964 ± 0.0030
β10.1177 ± 0.0030
γ−0.0656 ± 0.0015
δ00.6949 ± 0.0311
δ1−1.7581 ± 0.0675
|$\chi ^2_{\rm red}$|1.21
Definition|$\dot{m}_{\rm acc, \ast }(M_0, \mu , z) = \frac{1}{M_0}\frac{{\rm d}{M}_{\rm acc}}{{\rm d}\mu \, {\rm d}t}$|
Units(Gyr−1)
|$A(z) \, \left(\frac{M_0}{10^{10}\,{\rm M_{{\odot }}}}\right)^{\alpha (z)} \left[1 + \left(\frac{M_0}{M_0^{\prime }}\right)^{\delta (z)}\right] \mu ^{\beta (z) + \gamma \log _{10}\left(\frac{M_0}{10^{10}\,{\rm M_{{\odot }}}}\right)} \left(\frac{\mu }{1 + 3\mu }\right)$|⁠,
where
Fitting functionA(z) = A0(1 + z)η,
|$\alpha (z) = \alpha _0 (1+z)^{\alpha _1}$|⁠,
|$\beta (z) = \beta _0 (1+z)^{\beta _1}$|⁠,
|$\delta (z) = \delta _0 (1+z)^{\delta _1}$|⁠,
and |$M_0^{\prime } = 2 \times 10^{11} \, \,{\rm M_{{\odot }}}$| is fixed.
log10(A0/Gyr−1)−2.0252 ± 0.0060
η1.5996 ± 0.0146
α00.2013 ± 0.0050
α1−1.4888 ± 0.0540
β0−0.9964 ± 0.0030
β10.1177 ± 0.0030
γ−0.0656 ± 0.0015
δ00.6949 ± 0.0311
δ1−1.7581 ± 0.0675
|$\chi ^2_{\rm red}$|1.21
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close