Fitting function and best-fitting parameters for the specific stellar mass accretion rate. See Section 3.4 for details.
Definition . | |$\dot{m}_{\rm acc, \ast }(M_0, \mu , z) = \frac{1}{M_0}\frac{{\rm d}{M}_{\rm acc}}{{\rm d}\mu \, {\rm d}t}$| . |
---|---|
Units . | (Gyr−1) . |
|$A(z) \, \left(\frac{M_0}{10^{10}\,{\rm M_{{\odot }}}}\right)^{\alpha (z)} \left[1 + \left(\frac{M_0}{M_0^{\prime }}\right)^{\delta (z)}\right] \mu ^{\beta (z) + \gamma \log _{10}\left(\frac{M_0}{10^{10}\,{\rm M_{{\odot }}}}\right)} \left(\frac{\mu }{1 + 3\mu }\right)$|, | |
where | |
Fitting function | A(z) = A0(1 + z)η, |
|$\alpha (z) = \alpha _0 (1+z)^{\alpha _1}$|, | |
|$\beta (z) = \beta _0 (1+z)^{\beta _1}$|, | |
|$\delta (z) = \delta _0 (1+z)^{\delta _1}$|, | |
and |$M_0^{\prime } = 2 \times 10^{11} \, \,{\rm M_{{\odot }}}$| is fixed. | |
log10(A0/Gyr−1) | −2.0252 ± 0.0060 |
η | 1.5996 ± 0.0146 |
α0 | 0.2013 ± 0.0050 |
α1 | −1.4888 ± 0.0540 |
β0 | −0.9964 ± 0.0030 |
β1 | 0.1177 ± 0.0030 |
γ | −0.0656 ± 0.0015 |
δ0 | 0.6949 ± 0.0311 |
δ1 | −1.7581 ± 0.0675 |
|$\chi ^2_{\rm red}$| | 1.21 |
Definition . | |$\dot{m}_{\rm acc, \ast }(M_0, \mu , z) = \frac{1}{M_0}\frac{{\rm d}{M}_{\rm acc}}{{\rm d}\mu \, {\rm d}t}$| . |
---|---|
Units . | (Gyr−1) . |
|$A(z) \, \left(\frac{M_0}{10^{10}\,{\rm M_{{\odot }}}}\right)^{\alpha (z)} \left[1 + \left(\frac{M_0}{M_0^{\prime }}\right)^{\delta (z)}\right] \mu ^{\beta (z) + \gamma \log _{10}\left(\frac{M_0}{10^{10}\,{\rm M_{{\odot }}}}\right)} \left(\frac{\mu }{1 + 3\mu }\right)$|, | |
where | |
Fitting function | A(z) = A0(1 + z)η, |
|$\alpha (z) = \alpha _0 (1+z)^{\alpha _1}$|, | |
|$\beta (z) = \beta _0 (1+z)^{\beta _1}$|, | |
|$\delta (z) = \delta _0 (1+z)^{\delta _1}$|, | |
and |$M_0^{\prime } = 2 \times 10^{11} \, \,{\rm M_{{\odot }}}$| is fixed. | |
log10(A0/Gyr−1) | −2.0252 ± 0.0060 |
η | 1.5996 ± 0.0146 |
α0 | 0.2013 ± 0.0050 |
α1 | −1.4888 ± 0.0540 |
β0 | −0.9964 ± 0.0030 |
β1 | 0.1177 ± 0.0030 |
γ | −0.0656 ± 0.0015 |
δ0 | 0.6949 ± 0.0311 |
δ1 | −1.7581 ± 0.0675 |
|$\chi ^2_{\rm red}$| | 1.21 |
Fitting function and best-fitting parameters for the specific stellar mass accretion rate. See Section 3.4 for details.
Definition . | |$\dot{m}_{\rm acc, \ast }(M_0, \mu , z) = \frac{1}{M_0}\frac{{\rm d}{M}_{\rm acc}}{{\rm d}\mu \, {\rm d}t}$| . |
---|---|
Units . | (Gyr−1) . |
|$A(z) \, \left(\frac{M_0}{10^{10}\,{\rm M_{{\odot }}}}\right)^{\alpha (z)} \left[1 + \left(\frac{M_0}{M_0^{\prime }}\right)^{\delta (z)}\right] \mu ^{\beta (z) + \gamma \log _{10}\left(\frac{M_0}{10^{10}\,{\rm M_{{\odot }}}}\right)} \left(\frac{\mu }{1 + 3\mu }\right)$|, | |
where | |
Fitting function | A(z) = A0(1 + z)η, |
|$\alpha (z) = \alpha _0 (1+z)^{\alpha _1}$|, | |
|$\beta (z) = \beta _0 (1+z)^{\beta _1}$|, | |
|$\delta (z) = \delta _0 (1+z)^{\delta _1}$|, | |
and |$M_0^{\prime } = 2 \times 10^{11} \, \,{\rm M_{{\odot }}}$| is fixed. | |
log10(A0/Gyr−1) | −2.0252 ± 0.0060 |
η | 1.5996 ± 0.0146 |
α0 | 0.2013 ± 0.0050 |
α1 | −1.4888 ± 0.0540 |
β0 | −0.9964 ± 0.0030 |
β1 | 0.1177 ± 0.0030 |
γ | −0.0656 ± 0.0015 |
δ0 | 0.6949 ± 0.0311 |
δ1 | −1.7581 ± 0.0675 |
|$\chi ^2_{\rm red}$| | 1.21 |
Definition . | |$\dot{m}_{\rm acc, \ast }(M_0, \mu , z) = \frac{1}{M_0}\frac{{\rm d}{M}_{\rm acc}}{{\rm d}\mu \, {\rm d}t}$| . |
---|---|
Units . | (Gyr−1) . |
|$A(z) \, \left(\frac{M_0}{10^{10}\,{\rm M_{{\odot }}}}\right)^{\alpha (z)} \left[1 + \left(\frac{M_0}{M_0^{\prime }}\right)^{\delta (z)}\right] \mu ^{\beta (z) + \gamma \log _{10}\left(\frac{M_0}{10^{10}\,{\rm M_{{\odot }}}}\right)} \left(\frac{\mu }{1 + 3\mu }\right)$|, | |
where | |
Fitting function | A(z) = A0(1 + z)η, |
|$\alpha (z) = \alpha _0 (1+z)^{\alpha _1}$|, | |
|$\beta (z) = \beta _0 (1+z)^{\beta _1}$|, | |
|$\delta (z) = \delta _0 (1+z)^{\delta _1}$|, | |
and |$M_0^{\prime } = 2 \times 10^{11} \, \,{\rm M_{{\odot }}}$| is fixed. | |
log10(A0/Gyr−1) | −2.0252 ± 0.0060 |
η | 1.5996 ± 0.0146 |
α0 | 0.2013 ± 0.0050 |
α1 | −1.4888 ± 0.0540 |
β0 | −0.9964 ± 0.0030 |
β1 | 0.1177 ± 0.0030 |
γ | −0.0656 ± 0.0015 |
δ0 | 0.6949 ± 0.0311 |
δ1 | −1.7581 ± 0.0675 |
|$\chi ^2_{\rm red}$| | 1.21 |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.