j . | |$\hat{v}_s^{(j)}$| . |
---|---|
0 | |$\hat{v}_s^{(0)}=\lambda +\sigma _0 \equiv \hat{v}$| |
1 | |$\hat{v}_s^{(1)}=[\hat{v}^2+B(s)C(s)]/D_s$| |
2 | |$\hat{v}_s^{(2)}=[\hat{v}^3+\lbrace 2\hat{v}+(\lambda +A(s))\rbrace B(s)C(s)]/{D_s}^2$| |
3 | |$\hat{v}_s^{(3)}=[\hat{v}^4+\lbrace 3\hat{v}^2+2\hat{v}(\lambda +A(s)) + (\lambda +A(s))^2\rbrace B(s)C(s) + B(s)^2C(s)^2]/{D_s}^3$| |
4 | |$\hat{v}_s^{(4)}=[\hat{v}^5+\lbrace 4\hat{v}^3+3\hat{v}^2(\lambda +A(s))+2\hat{v}(\lambda +A(s))^2 + (\lambda +A(s))^3\rbrace B(s)C(s) \,\,\,\, $| |
|$\quad \qquad+\,\, \lbrace 3\hat{v}+2(\lambda +A(s))\rbrace B(s)^2C(s)^2]/{D_s}^4$| |
j . | |$\hat{v}_s^{(j)}$| . |
---|---|
0 | |$\hat{v}_s^{(0)}=\lambda +\sigma _0 \equiv \hat{v}$| |
1 | |$\hat{v}_s^{(1)}=[\hat{v}^2+B(s)C(s)]/D_s$| |
2 | |$\hat{v}_s^{(2)}=[\hat{v}^3+\lbrace 2\hat{v}+(\lambda +A(s))\rbrace B(s)C(s)]/{D_s}^2$| |
3 | |$\hat{v}_s^{(3)}=[\hat{v}^4+\lbrace 3\hat{v}^2+2\hat{v}(\lambda +A(s)) + (\lambda +A(s))^2\rbrace B(s)C(s) + B(s)^2C(s)^2]/{D_s}^3$| |
4 | |$\hat{v}_s^{(4)}=[\hat{v}^5+\lbrace 4\hat{v}^3+3\hat{v}^2(\lambda +A(s))+2\hat{v}(\lambda +A(s))^2 + (\lambda +A(s))^3\rbrace B(s)C(s) \,\,\,\, $| |
|$\quad \qquad+\,\, \lbrace 3\hat{v}+2(\lambda +A(s))\rbrace B(s)^2C(s)^2]/{D_s}^4$| |
j . | |$\hat{v}_s^{(j)}$| . |
---|---|
0 | |$\hat{v}_s^{(0)}=\lambda +\sigma _0 \equiv \hat{v}$| |
1 | |$\hat{v}_s^{(1)}=[\hat{v}^2+B(s)C(s)]/D_s$| |
2 | |$\hat{v}_s^{(2)}=[\hat{v}^3+\lbrace 2\hat{v}+(\lambda +A(s))\rbrace B(s)C(s)]/{D_s}^2$| |
3 | |$\hat{v}_s^{(3)}=[\hat{v}^4+\lbrace 3\hat{v}^2+2\hat{v}(\lambda +A(s)) + (\lambda +A(s))^2\rbrace B(s)C(s) + B(s)^2C(s)^2]/{D_s}^3$| |
4 | |$\hat{v}_s^{(4)}=[\hat{v}^5+\lbrace 4\hat{v}^3+3\hat{v}^2(\lambda +A(s))+2\hat{v}(\lambda +A(s))^2 + (\lambda +A(s))^3\rbrace B(s)C(s) \,\,\,\, $| |
|$\quad \qquad+\,\, \lbrace 3\hat{v}+2(\lambda +A(s))\rbrace B(s)^2C(s)^2]/{D_s}^4$| |
j . | |$\hat{v}_s^{(j)}$| . |
---|---|
0 | |$\hat{v}_s^{(0)}=\lambda +\sigma _0 \equiv \hat{v}$| |
1 | |$\hat{v}_s^{(1)}=[\hat{v}^2+B(s)C(s)]/D_s$| |
2 | |$\hat{v}_s^{(2)}=[\hat{v}^3+\lbrace 2\hat{v}+(\lambda +A(s))\rbrace B(s)C(s)]/{D_s}^2$| |
3 | |$\hat{v}_s^{(3)}=[\hat{v}^4+\lbrace 3\hat{v}^2+2\hat{v}(\lambda +A(s)) + (\lambda +A(s))^2\rbrace B(s)C(s) + B(s)^2C(s)^2]/{D_s}^3$| |
4 | |$\hat{v}_s^{(4)}=[\hat{v}^5+\lbrace 4\hat{v}^3+3\hat{v}^2(\lambda +A(s))+2\hat{v}(\lambda +A(s))^2 + (\lambda +A(s))^3\rbrace B(s)C(s) \,\,\,\, $| |
|$\quad \qquad+\,\, \lbrace 3\hat{v}+2(\lambda +A(s))\rbrace B(s)^2C(s)^2]/{D_s}^4$| |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.