Table 2.

Edge-level inference results across all settings. The TPR and FDR are calculated separately for each of the two subnetworks (⁠|$G_1$||$|V_1|=25$| and |$G_2$||$|V_2|=50$|⁠). The means (standard deviations) of TPR and FDR are summarized based on 100 repeated simulations. TPR is determined by the proportion of edges in |$G_c$| that can be recovered by |$\hat{G}_c$|⁠, and FDR is the proportion of edges in |$\hat{G}_c$| are not in |$G_c$|⁠. TPR = 1 and FDR = 0 suggest a perfect recovery of |$G_c$| by |$\hat{G}_c$|⁠. SICERS outperforms the comparable methods because the objective function can maximize the signal while suppressing noise, and thereby better recovers the underlying true |$G_c$|⁠. 

  |$S = 240$||$S = 120$|
  Cohen’s |$d$|1.20.80.51.20.80.5
SICERSTPR|$G_1$|1(0)0.87(0.2)0.91(0.19)1(0)0.9(0.2)0.88(0.2)
  |$G_2$|1(0)1(0)1(0)1(0)1(0)1(0)
 FDR|$G_1$|0(0)0(0)0(0.01)0(0)0.02(0.04)0.02(0.04)
  |$G_2$|0(0)0.03(0.04)0.09(0.21)0(0)0.04(0.05)0.09(0.19)
LouvainTPR|$G_1$|1(0)1(0)1(0)1(0)1(0)1(0)
  |$G_2$|1(0)1(0)1(0)1(0)1(0)1(0)
 FDR|$G_1$|0.21(0.1)0.58(0.12)0.44(0.11)0.25(0.11)0.58(0.12)0.41(0.16)
  |$G_2$|0.16(0.06)0.03(0.03)0.04(0.04)0.16(0.05)0.02(0.03)0.03(0.03)
DenseTPR|$G_1$|1(0)1(0)1(0)1(0)1(0)1(0)
  |$G_2$|1(0)1(0)1(0)1(0)1(0)1(0)
 FDR|$G_1$|0(0)0(0)0(0)0(0)0(0)0(0)
  |$G_2$|0(0)0(0)0.35(0.27)0(0)0(0)0.52(0.13)
NBSTPR|$G_1$|1(0)NANA1(0)NANA
  |$G_2$|1(0)NANA1(0)NANA
 FDR|$G_0$|0.28(0.05)NANA0.21(0.1)NANA
  |$G_2$|0.59(0.16)NANA0.54(0.21)NANA
BH-FDRTPR 1(0)0.95(0)0.94(0)1(0)0.94(0.01)0.75(0.01)
 FDR 0.18(0.01)0.5(0)0.54(0)0.18(0.01)0.5(0)0.54(0.01)
  |$S = 240$||$S = 120$|
  Cohen’s |$d$|1.20.80.51.20.80.5
SICERSTPR|$G_1$|1(0)0.87(0.2)0.91(0.19)1(0)0.9(0.2)0.88(0.2)
  |$G_2$|1(0)1(0)1(0)1(0)1(0)1(0)
 FDR|$G_1$|0(0)0(0)0(0.01)0(0)0.02(0.04)0.02(0.04)
  |$G_2$|0(0)0.03(0.04)0.09(0.21)0(0)0.04(0.05)0.09(0.19)
LouvainTPR|$G_1$|1(0)1(0)1(0)1(0)1(0)1(0)
  |$G_2$|1(0)1(0)1(0)1(0)1(0)1(0)
 FDR|$G_1$|0.21(0.1)0.58(0.12)0.44(0.11)0.25(0.11)0.58(0.12)0.41(0.16)
  |$G_2$|0.16(0.06)0.03(0.03)0.04(0.04)0.16(0.05)0.02(0.03)0.03(0.03)
DenseTPR|$G_1$|1(0)1(0)1(0)1(0)1(0)1(0)
  |$G_2$|1(0)1(0)1(0)1(0)1(0)1(0)
 FDR|$G_1$|0(0)0(0)0(0)0(0)0(0)0(0)
  |$G_2$|0(0)0(0)0.35(0.27)0(0)0(0)0.52(0.13)
NBSTPR|$G_1$|1(0)NANA1(0)NANA
  |$G_2$|1(0)NANA1(0)NANA
 FDR|$G_0$|0.28(0.05)NANA0.21(0.1)NANA
  |$G_2$|0.59(0.16)NANA0.54(0.21)NANA
BH-FDRTPR 1(0)0.95(0)0.94(0)1(0)0.94(0.01)0.75(0.01)
 FDR 0.18(0.01)0.5(0)0.54(0)0.18(0.01)0.5(0)0.54(0.01)
Table 2.

Edge-level inference results across all settings. The TPR and FDR are calculated separately for each of the two subnetworks (⁠|$G_1$||$|V_1|=25$| and |$G_2$||$|V_2|=50$|⁠). The means (standard deviations) of TPR and FDR are summarized based on 100 repeated simulations. TPR is determined by the proportion of edges in |$G_c$| that can be recovered by |$\hat{G}_c$|⁠, and FDR is the proportion of edges in |$\hat{G}_c$| are not in |$G_c$|⁠. TPR = 1 and FDR = 0 suggest a perfect recovery of |$G_c$| by |$\hat{G}_c$|⁠. SICERS outperforms the comparable methods because the objective function can maximize the signal while suppressing noise, and thereby better recovers the underlying true |$G_c$|⁠. 

  |$S = 240$||$S = 120$|
  Cohen’s |$d$|1.20.80.51.20.80.5
SICERSTPR|$G_1$|1(0)0.87(0.2)0.91(0.19)1(0)0.9(0.2)0.88(0.2)
  |$G_2$|1(0)1(0)1(0)1(0)1(0)1(0)
 FDR|$G_1$|0(0)0(0)0(0.01)0(0)0.02(0.04)0.02(0.04)
  |$G_2$|0(0)0.03(0.04)0.09(0.21)0(0)0.04(0.05)0.09(0.19)
LouvainTPR|$G_1$|1(0)1(0)1(0)1(0)1(0)1(0)
  |$G_2$|1(0)1(0)1(0)1(0)1(0)1(0)
 FDR|$G_1$|0.21(0.1)0.58(0.12)0.44(0.11)0.25(0.11)0.58(0.12)0.41(0.16)
  |$G_2$|0.16(0.06)0.03(0.03)0.04(0.04)0.16(0.05)0.02(0.03)0.03(0.03)
DenseTPR|$G_1$|1(0)1(0)1(0)1(0)1(0)1(0)
  |$G_2$|1(0)1(0)1(0)1(0)1(0)1(0)
 FDR|$G_1$|0(0)0(0)0(0)0(0)0(0)0(0)
  |$G_2$|0(0)0(0)0.35(0.27)0(0)0(0)0.52(0.13)
NBSTPR|$G_1$|1(0)NANA1(0)NANA
  |$G_2$|1(0)NANA1(0)NANA
 FDR|$G_0$|0.28(0.05)NANA0.21(0.1)NANA
  |$G_2$|0.59(0.16)NANA0.54(0.21)NANA
BH-FDRTPR 1(0)0.95(0)0.94(0)1(0)0.94(0.01)0.75(0.01)
 FDR 0.18(0.01)0.5(0)0.54(0)0.18(0.01)0.5(0)0.54(0.01)
  |$S = 240$||$S = 120$|
  Cohen’s |$d$|1.20.80.51.20.80.5
SICERSTPR|$G_1$|1(0)0.87(0.2)0.91(0.19)1(0)0.9(0.2)0.88(0.2)
  |$G_2$|1(0)1(0)1(0)1(0)1(0)1(0)
 FDR|$G_1$|0(0)0(0)0(0.01)0(0)0.02(0.04)0.02(0.04)
  |$G_2$|0(0)0.03(0.04)0.09(0.21)0(0)0.04(0.05)0.09(0.19)
LouvainTPR|$G_1$|1(0)1(0)1(0)1(0)1(0)1(0)
  |$G_2$|1(0)1(0)1(0)1(0)1(0)1(0)
 FDR|$G_1$|0.21(0.1)0.58(0.12)0.44(0.11)0.25(0.11)0.58(0.12)0.41(0.16)
  |$G_2$|0.16(0.06)0.03(0.03)0.04(0.04)0.16(0.05)0.02(0.03)0.03(0.03)
DenseTPR|$G_1$|1(0)1(0)1(0)1(0)1(0)1(0)
  |$G_2$|1(0)1(0)1(0)1(0)1(0)1(0)
 FDR|$G_1$|0(0)0(0)0(0)0(0)0(0)0(0)
  |$G_2$|0(0)0(0)0.35(0.27)0(0)0(0)0.52(0.13)
NBSTPR|$G_1$|1(0)NANA1(0)NANA
  |$G_2$|1(0)NANA1(0)NANA
 FDR|$G_0$|0.28(0.05)NANA0.21(0.1)NANA
  |$G_2$|0.59(0.16)NANA0.54(0.21)NANA
BH-FDRTPR 1(0)0.95(0)0.94(0)1(0)0.94(0.01)0.75(0.01)
 FDR 0.18(0.01)0.5(0)0.54(0)0.18(0.01)0.5(0)0.54(0.01)
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close