TABLE 1

Predictive performance: mean across 50 replicated datasets.

Scenario 1aScenario 1b
MOT|$\%\Delta MTU$|NPCMOT|$\%\Delta MTU$|NPC
pam-bp14.06000.019210.260014.2400−0.010613.2000
(3.2351)(0.3447)(1.9672)(2.9593)(0.3429)(2.2039)
km-bp13.42000.113011.400013.40000.075013.9600
(2.8074)(0.3038)(2.5314)(2.6108)(0.3076)(2.2584)
hc-bp12.86000.152012.020012.44000.141812.6800
(3.1429)(0.3642)(2.8961)(3.1374)(0.3403)(2.7807)
dm-int12.60000.175613.820013.28000.074012.9600
(3.4934)(0.3536)(2.9877)(3.7310)(0.3851)(3.0902)
t-ppmx10.00000.393315.160010.78000.333914.4280
(3.2451)(0.3080)(2.2800)(3.2968)(0.3362)(2.8646)
Scenario 2aScenario 2b
MOTMTUNPCMOTMTUNPC
pam-bp14.16000.014510.160014.2000−0.006813.2200
(3.2474)(0.3405)(2.2439)(2.9966)(0.3487)(2.2341)
km-bp13.36000.113612.480013.52000.068913.7800
(2.9190)(0.3082)(2.7198)(2.5414)(0.3037)(2.2883)
hc-bp12.96000.122311.540012.44000.143012.7600
(3.5165)(0.3846)(11.54)(3.1112)(0.3344)(2.7372)
dm-int12.96000.122311.540013.04000.102113.0200
(3.5165)(0.3847)(2.8082)(3.5798)(0.3627)(2.9657)
t-ppmx10.62000.357815.380010.60000.349714.4400
(3.3313)(0.3347)(2.5446)(3.1880)(0.3269)(2.8224)
Scenario 3aScenario 3b
MOTMTUNPCMOTMTUNPC
pam-bp13.98000.027511.860014.5000−0.063514.1400
(3.3654)(0.3469)(2.6955)(2.9433)(0.3310)(2.8856)
km-bp13.36000.115911.600013.70000.040513.8000
(2.8909)(0.3055)(2.6954)(2.9014)(0.3363)(2.5873)
hc-bp12.66000.162111.500012.98000.085912.3800
(3.2740)(0.3684)(2.8158)(3.3715)(0.3647)(2.3724)
dm-int12.74000.161613.900012.84000.095713.6000
(3.7461)(0.3747)(3.1445)(3.1646)(0.3548)(2.9207)
t-ppmx10.26000.361015.040010.86000.324414.8400
(3.6411)(0.3352)(2.4320)(3.1234)(0.3281)(2.6677)
Scenario 1aScenario 1b
MOT|$\%\Delta MTU$|NPCMOT|$\%\Delta MTU$|NPC
pam-bp14.06000.019210.260014.2400−0.010613.2000
(3.2351)(0.3447)(1.9672)(2.9593)(0.3429)(2.2039)
km-bp13.42000.113011.400013.40000.075013.9600
(2.8074)(0.3038)(2.5314)(2.6108)(0.3076)(2.2584)
hc-bp12.86000.152012.020012.44000.141812.6800
(3.1429)(0.3642)(2.8961)(3.1374)(0.3403)(2.7807)
dm-int12.60000.175613.820013.28000.074012.9600
(3.4934)(0.3536)(2.9877)(3.7310)(0.3851)(3.0902)
t-ppmx10.00000.393315.160010.78000.333914.4280
(3.2451)(0.3080)(2.2800)(3.2968)(0.3362)(2.8646)
Scenario 2aScenario 2b
MOTMTUNPCMOTMTUNPC
pam-bp14.16000.014510.160014.2000−0.006813.2200
(3.2474)(0.3405)(2.2439)(2.9966)(0.3487)(2.2341)
km-bp13.36000.113612.480013.52000.068913.7800
(2.9190)(0.3082)(2.7198)(2.5414)(0.3037)(2.2883)
hc-bp12.96000.122311.540012.44000.143012.7600
(3.5165)(0.3846)(11.54)(3.1112)(0.3344)(2.7372)
dm-int12.96000.122311.540013.04000.102113.0200
(3.5165)(0.3847)(2.8082)(3.5798)(0.3627)(2.9657)
t-ppmx10.62000.357815.380010.60000.349714.4400
(3.3313)(0.3347)(2.5446)(3.1880)(0.3269)(2.8224)
Scenario 3aScenario 3b
MOTMTUNPCMOTMTUNPC
pam-bp13.98000.027511.860014.5000−0.063514.1400
(3.3654)(0.3469)(2.6955)(2.9433)(0.3310)(2.8856)
km-bp13.36000.115911.600013.70000.040513.8000
(2.8909)(0.3055)(2.6954)(2.9014)(0.3363)(2.5873)
hc-bp12.66000.162111.500012.98000.085912.3800
(3.2740)(0.3684)(2.8158)(3.3715)(0.3647)(2.3724)
dm-int12.74000.161613.900012.84000.095713.6000
(3.7461)(0.3747)(3.1445)(3.1646)(0.3548)(2.9207)
t-ppmx10.26000.361015.040010.86000.324414.8400
(3.6411)(0.3352)(2.4320)(3.1234)(0.3281)(2.6677)

SDs are in parentheses. In each scenario and for each index, the best performance is in bold.

TABLE 1

Predictive performance: mean across 50 replicated datasets.

Scenario 1aScenario 1b
MOT|$\%\Delta MTU$|NPCMOT|$\%\Delta MTU$|NPC
pam-bp14.06000.019210.260014.2400−0.010613.2000
(3.2351)(0.3447)(1.9672)(2.9593)(0.3429)(2.2039)
km-bp13.42000.113011.400013.40000.075013.9600
(2.8074)(0.3038)(2.5314)(2.6108)(0.3076)(2.2584)
hc-bp12.86000.152012.020012.44000.141812.6800
(3.1429)(0.3642)(2.8961)(3.1374)(0.3403)(2.7807)
dm-int12.60000.175613.820013.28000.074012.9600
(3.4934)(0.3536)(2.9877)(3.7310)(0.3851)(3.0902)
t-ppmx10.00000.393315.160010.78000.333914.4280
(3.2451)(0.3080)(2.2800)(3.2968)(0.3362)(2.8646)
Scenario 2aScenario 2b
MOTMTUNPCMOTMTUNPC
pam-bp14.16000.014510.160014.2000−0.006813.2200
(3.2474)(0.3405)(2.2439)(2.9966)(0.3487)(2.2341)
km-bp13.36000.113612.480013.52000.068913.7800
(2.9190)(0.3082)(2.7198)(2.5414)(0.3037)(2.2883)
hc-bp12.96000.122311.540012.44000.143012.7600
(3.5165)(0.3846)(11.54)(3.1112)(0.3344)(2.7372)
dm-int12.96000.122311.540013.04000.102113.0200
(3.5165)(0.3847)(2.8082)(3.5798)(0.3627)(2.9657)
t-ppmx10.62000.357815.380010.60000.349714.4400
(3.3313)(0.3347)(2.5446)(3.1880)(0.3269)(2.8224)
Scenario 3aScenario 3b
MOTMTUNPCMOTMTUNPC
pam-bp13.98000.027511.860014.5000−0.063514.1400
(3.3654)(0.3469)(2.6955)(2.9433)(0.3310)(2.8856)
km-bp13.36000.115911.600013.70000.040513.8000
(2.8909)(0.3055)(2.6954)(2.9014)(0.3363)(2.5873)
hc-bp12.66000.162111.500012.98000.085912.3800
(3.2740)(0.3684)(2.8158)(3.3715)(0.3647)(2.3724)
dm-int12.74000.161613.900012.84000.095713.6000
(3.7461)(0.3747)(3.1445)(3.1646)(0.3548)(2.9207)
t-ppmx10.26000.361015.040010.86000.324414.8400
(3.6411)(0.3352)(2.4320)(3.1234)(0.3281)(2.6677)
Scenario 1aScenario 1b
MOT|$\%\Delta MTU$|NPCMOT|$\%\Delta MTU$|NPC
pam-bp14.06000.019210.260014.2400−0.010613.2000
(3.2351)(0.3447)(1.9672)(2.9593)(0.3429)(2.2039)
km-bp13.42000.113011.400013.40000.075013.9600
(2.8074)(0.3038)(2.5314)(2.6108)(0.3076)(2.2584)
hc-bp12.86000.152012.020012.44000.141812.6800
(3.1429)(0.3642)(2.8961)(3.1374)(0.3403)(2.7807)
dm-int12.60000.175613.820013.28000.074012.9600
(3.4934)(0.3536)(2.9877)(3.7310)(0.3851)(3.0902)
t-ppmx10.00000.393315.160010.78000.333914.4280
(3.2451)(0.3080)(2.2800)(3.2968)(0.3362)(2.8646)
Scenario 2aScenario 2b
MOTMTUNPCMOTMTUNPC
pam-bp14.16000.014510.160014.2000−0.006813.2200
(3.2474)(0.3405)(2.2439)(2.9966)(0.3487)(2.2341)
km-bp13.36000.113612.480013.52000.068913.7800
(2.9190)(0.3082)(2.7198)(2.5414)(0.3037)(2.2883)
hc-bp12.96000.122311.540012.44000.143012.7600
(3.5165)(0.3846)(11.54)(3.1112)(0.3344)(2.7372)
dm-int12.96000.122311.540013.04000.102113.0200
(3.5165)(0.3847)(2.8082)(3.5798)(0.3627)(2.9657)
t-ppmx10.62000.357815.380010.60000.349714.4400
(3.3313)(0.3347)(2.5446)(3.1880)(0.3269)(2.8224)
Scenario 3aScenario 3b
MOTMTUNPCMOTMTUNPC
pam-bp13.98000.027511.860014.5000−0.063514.1400
(3.3654)(0.3469)(2.6955)(2.9433)(0.3310)(2.8856)
km-bp13.36000.115911.600013.70000.040513.8000
(2.8909)(0.3055)(2.6954)(2.9014)(0.3363)(2.5873)
hc-bp12.66000.162111.500012.98000.085912.3800
(3.2740)(0.3684)(2.8158)(3.3715)(0.3647)(2.3724)
dm-int12.74000.161613.900012.84000.095713.6000
(3.7461)(0.3747)(3.1445)(3.1646)(0.3548)(2.9207)
t-ppmx10.26000.361015.040010.86000.324414.8400
(3.6411)(0.3352)(2.4320)(3.1234)(0.3281)(2.6677)

SDs are in parentheses. In each scenario and for each index, the best performance is in bold.

Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close