PDE formula . | Type of PI . | PI θ . | PI space Θ . |
---|---|---|---|
∂tu = κΔu, u(±1, t) = 0 | Spatiotemporal invariant | κ | [0, 1] |
∂tu = 0.1Δu + f(x), u(±1, t) = 0 | Temporal invariant | f(x) | {a sin (x): a ∈ [0, 1]} |
∂tu = 0.1Δu, u(±1, t) = c | Boundary invariant | c | [−1, 1] |
PDE formula . | Type of PI . | PI θ . | PI space Θ . |
---|---|---|---|
∂tu = κΔu, u(±1, t) = 0 | Spatiotemporal invariant | κ | [0, 1] |
∂tu = 0.1Δu + f(x), u(±1, t) = 0 | Temporal invariant | f(x) | {a sin (x): a ∈ [0, 1]} |
∂tu = 0.1Δu, u(±1, t) = c | Boundary invariant | c | [−1, 1] |
PDE formula . | Type of PI . | PI θ . | PI space Θ . |
---|---|---|---|
∂tu = κΔu, u(±1, t) = 0 | Spatiotemporal invariant | κ | [0, 1] |
∂tu = 0.1Δu + f(x), u(±1, t) = 0 | Temporal invariant | f(x) | {a sin (x): a ∈ [0, 1]} |
∂tu = 0.1Δu, u(±1, t) = c | Boundary invariant | c | [−1, 1] |
PDE formula . | Type of PI . | PI θ . | PI space Θ . |
---|---|---|---|
∂tu = κΔu, u(±1, t) = 0 | Spatiotemporal invariant | κ | [0, 1] |
∂tu = 0.1Δu + f(x), u(±1, t) = 0 | Temporal invariant | f(x) | {a sin (x): a ∈ [0, 1]} |
∂tu = 0.1Δu, u(±1, t) = c | Boundary invariant | c | [−1, 1] |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.