Table 1.

Overview of equations for Newtonian gravity, a Plummer softened gravitational potential, and a Wendland C2 softened potential.

Newtonian (no softening)
PotentialφN(r) =GMr−1
Acceleration|aN(r)| =GMr−2
Free-fall timetff, N =|$\left(\frac{3\pi }{32 G \rho }\right)^{1/2} = 4.4\, \mathrm{Myr} \left(\frac{n_{\mathrm{H}}}{100\, \mathrm{cm}^{-3}}\right)^{-1/2}$|
Jeans lengthλJ, N =|$\left(\frac{3\pi \gamma X_{\mathrm{H}}k_{\mathrm{B}}T}{32 G m_{\mathrm{H}}^2 n_{\mathrm{H}}}\right)^{1/2} = 1.5\, \mathrm{pc} \left(\frac{T}{10\, \mathrm{K}}\right)^{1/2} \left(\frac{n_{\mathrm{H}}}{100 \, \mathrm{cm}^{-3}}\right)^{-1/2}$|
Jeans massMJ, N =|$\frac{4\pi \rho }{3} \lambda _{\mathrm{J,N}}^3 = 46 \, \mathrm{M}_{\odot } \, \left(\frac{T}{10\, \mathrm{K}} \right)^{3/2} \left(\frac{n_{\mathrm{H}}}{100\, \mathrm{cm}^{-3}}\right)^{-1/2}$|
Plummer softening with softening scale ϵ = ϵPlummer
PotentialφP(r, ϵ) =GM(r2 + ϵ2)−1/2
Acceleration|aP(r, ϵ)| =GMr(r2 + ϵ2)−3/2
Free-fall timetff, P, fit =|$t_{\mathrm{ff,N}} \left(1 + 2^{2/3} \left(\frac{\epsilon }{R} \right)^{2} \right)^{3/4}$|
Jeans lengthλJ, P, fit =|$\lambda _{\mathrm{J,N}} \left(1 + 1.42 \left(\frac{\epsilon }{\lambda _{\mathrm{J,N}}}\right)^{3/2} \right)^{2/5}$|
Jeans massMJ, P, fit =|$M_{\mathrm{J,N}} \left(1 + 1.42 \left(\frac{\epsilon }{\lambda _{\mathrm{J,N}}}\right)^{3/2}\right)^{6/5}$|
Wendland C2/Swift softening with softening scale H = 3ϵ = ϵPlummer and u = r/H
PotentialφW(r < H, H) =GMH−1W(u)
   with W(u) =(− 3u7 + 15u6 − 28u5 + 21u4 − 7u2 + 3)
φW(rH) =GMr−1
Acceleration|aW(r < H, H)| =GMrH−3V(u)
   with V(u) =W′(u)/u  = (21u5 − 90u4 + 140u3 − 84u2 + 14)
|aW(rH)| =GMr−2
Free-fall timetff, W, fit =|$t_{\mathrm{ff,N}} \left(1 + \frac{1}{7} \left(\frac{H}{R} \right)^{3} \right)^{1/2}$|  = |$t_{\mathrm{ff,N}} \left(1 + \frac{27}{7} \left(\frac{\epsilon }{R} \right)^{3} \right)^{1/2}$|
Jeans lengthλJ, W, fit =|$\lambda _{\mathrm{J,N}} \left(1 + 0.27 \left(\frac{H}{\lambda _{\mathrm{J,N}}}\right)^2 \right)^{3/10}$|  = |$\lambda _{\mathrm{J,N}} \left(1 + 2.43 \left(\frac{\epsilon }{\lambda _{\mathrm{J,N}}}\right)^2 \right)^{3/10}$|
Jeans massMJ, W, fit =|$M_{\mathrm{J,N}} \left(1 + 0.27 \left(\frac{H}{\lambda _{\mathrm{J,N}}}\right)^2\right)^{9/10}$|  = |$M_{\mathrm{J,N}} \left(1 + 2.43 \left(\frac{\epsilon }{\lambda _{\mathrm{J,N}}}\right)^2\right)^{9/10}$|
Newtonian (no softening)
PotentialφN(r) =GMr−1
Acceleration|aN(r)| =GMr−2
Free-fall timetff, N =|$\left(\frac{3\pi }{32 G \rho }\right)^{1/2} = 4.4\, \mathrm{Myr} \left(\frac{n_{\mathrm{H}}}{100\, \mathrm{cm}^{-3}}\right)^{-1/2}$|
Jeans lengthλJ, N =|$\left(\frac{3\pi \gamma X_{\mathrm{H}}k_{\mathrm{B}}T}{32 G m_{\mathrm{H}}^2 n_{\mathrm{H}}}\right)^{1/2} = 1.5\, \mathrm{pc} \left(\frac{T}{10\, \mathrm{K}}\right)^{1/2} \left(\frac{n_{\mathrm{H}}}{100 \, \mathrm{cm}^{-3}}\right)^{-1/2}$|
Jeans massMJ, N =|$\frac{4\pi \rho }{3} \lambda _{\mathrm{J,N}}^3 = 46 \, \mathrm{M}_{\odot } \, \left(\frac{T}{10\, \mathrm{K}} \right)^{3/2} \left(\frac{n_{\mathrm{H}}}{100\, \mathrm{cm}^{-3}}\right)^{-1/2}$|
Plummer softening with softening scale ϵ = ϵPlummer
PotentialφP(r, ϵ) =GM(r2 + ϵ2)−1/2
Acceleration|aP(r, ϵ)| =GMr(r2 + ϵ2)−3/2
Free-fall timetff, P, fit =|$t_{\mathrm{ff,N}} \left(1 + 2^{2/3} \left(\frac{\epsilon }{R} \right)^{2} \right)^{3/4}$|
Jeans lengthλJ, P, fit =|$\lambda _{\mathrm{J,N}} \left(1 + 1.42 \left(\frac{\epsilon }{\lambda _{\mathrm{J,N}}}\right)^{3/2} \right)^{2/5}$|
Jeans massMJ, P, fit =|$M_{\mathrm{J,N}} \left(1 + 1.42 \left(\frac{\epsilon }{\lambda _{\mathrm{J,N}}}\right)^{3/2}\right)^{6/5}$|
Wendland C2/Swift softening with softening scale H = 3ϵ = ϵPlummer and u = r/H
PotentialφW(r < H, H) =GMH−1W(u)
   with W(u) =(− 3u7 + 15u6 − 28u5 + 21u4 − 7u2 + 3)
φW(rH) =GMr−1
Acceleration|aW(r < H, H)| =GMrH−3V(u)
   with V(u) =W′(u)/u  = (21u5 − 90u4 + 140u3 − 84u2 + 14)
|aW(rH)| =GMr−2
Free-fall timetff, W, fit =|$t_{\mathrm{ff,N}} \left(1 + \frac{1}{7} \left(\frac{H}{R} \right)^{3} \right)^{1/2}$|  = |$t_{\mathrm{ff,N}} \left(1 + \frac{27}{7} \left(\frac{\epsilon }{R} \right)^{3} \right)^{1/2}$|
Jeans lengthλJ, W, fit =|$\lambda _{\mathrm{J,N}} \left(1 + 0.27 \left(\frac{H}{\lambda _{\mathrm{J,N}}}\right)^2 \right)^{3/10}$|  = |$\lambda _{\mathrm{J,N}} \left(1 + 2.43 \left(\frac{\epsilon }{\lambda _{\mathrm{J,N}}}\right)^2 \right)^{3/10}$|
Jeans massMJ, W, fit =|$M_{\mathrm{J,N}} \left(1 + 0.27 \left(\frac{H}{\lambda _{\mathrm{J,N}}}\right)^2\right)^{9/10}$|  = |$M_{\mathrm{J,N}} \left(1 + 2.43 \left(\frac{\epsilon }{\lambda _{\mathrm{J,N}}}\right)^2\right)^{9/10}$|
Table 1.

Overview of equations for Newtonian gravity, a Plummer softened gravitational potential, and a Wendland C2 softened potential.

Newtonian (no softening)
PotentialφN(r) =GMr−1
Acceleration|aN(r)| =GMr−2
Free-fall timetff, N =|$\left(\frac{3\pi }{32 G \rho }\right)^{1/2} = 4.4\, \mathrm{Myr} \left(\frac{n_{\mathrm{H}}}{100\, \mathrm{cm}^{-3}}\right)^{-1/2}$|
Jeans lengthλJ, N =|$\left(\frac{3\pi \gamma X_{\mathrm{H}}k_{\mathrm{B}}T}{32 G m_{\mathrm{H}}^2 n_{\mathrm{H}}}\right)^{1/2} = 1.5\, \mathrm{pc} \left(\frac{T}{10\, \mathrm{K}}\right)^{1/2} \left(\frac{n_{\mathrm{H}}}{100 \, \mathrm{cm}^{-3}}\right)^{-1/2}$|
Jeans massMJ, N =|$\frac{4\pi \rho }{3} \lambda _{\mathrm{J,N}}^3 = 46 \, \mathrm{M}_{\odot } \, \left(\frac{T}{10\, \mathrm{K}} \right)^{3/2} \left(\frac{n_{\mathrm{H}}}{100\, \mathrm{cm}^{-3}}\right)^{-1/2}$|
Plummer softening with softening scale ϵ = ϵPlummer
PotentialφP(r, ϵ) =GM(r2 + ϵ2)−1/2
Acceleration|aP(r, ϵ)| =GMr(r2 + ϵ2)−3/2
Free-fall timetff, P, fit =|$t_{\mathrm{ff,N}} \left(1 + 2^{2/3} \left(\frac{\epsilon }{R} \right)^{2} \right)^{3/4}$|
Jeans lengthλJ, P, fit =|$\lambda _{\mathrm{J,N}} \left(1 + 1.42 \left(\frac{\epsilon }{\lambda _{\mathrm{J,N}}}\right)^{3/2} \right)^{2/5}$|
Jeans massMJ, P, fit =|$M_{\mathrm{J,N}} \left(1 + 1.42 \left(\frac{\epsilon }{\lambda _{\mathrm{J,N}}}\right)^{3/2}\right)^{6/5}$|
Wendland C2/Swift softening with softening scale H = 3ϵ = ϵPlummer and u = r/H
PotentialφW(r < H, H) =GMH−1W(u)
   with W(u) =(− 3u7 + 15u6 − 28u5 + 21u4 − 7u2 + 3)
φW(rH) =GMr−1
Acceleration|aW(r < H, H)| =GMrH−3V(u)
   with V(u) =W′(u)/u  = (21u5 − 90u4 + 140u3 − 84u2 + 14)
|aW(rH)| =GMr−2
Free-fall timetff, W, fit =|$t_{\mathrm{ff,N}} \left(1 + \frac{1}{7} \left(\frac{H}{R} \right)^{3} \right)^{1/2}$|  = |$t_{\mathrm{ff,N}} \left(1 + \frac{27}{7} \left(\frac{\epsilon }{R} \right)^{3} \right)^{1/2}$|
Jeans lengthλJ, W, fit =|$\lambda _{\mathrm{J,N}} \left(1 + 0.27 \left(\frac{H}{\lambda _{\mathrm{J,N}}}\right)^2 \right)^{3/10}$|  = |$\lambda _{\mathrm{J,N}} \left(1 + 2.43 \left(\frac{\epsilon }{\lambda _{\mathrm{J,N}}}\right)^2 \right)^{3/10}$|
Jeans massMJ, W, fit =|$M_{\mathrm{J,N}} \left(1 + 0.27 \left(\frac{H}{\lambda _{\mathrm{J,N}}}\right)^2\right)^{9/10}$|  = |$M_{\mathrm{J,N}} \left(1 + 2.43 \left(\frac{\epsilon }{\lambda _{\mathrm{J,N}}}\right)^2\right)^{9/10}$|
Newtonian (no softening)
PotentialφN(r) =GMr−1
Acceleration|aN(r)| =GMr−2
Free-fall timetff, N =|$\left(\frac{3\pi }{32 G \rho }\right)^{1/2} = 4.4\, \mathrm{Myr} \left(\frac{n_{\mathrm{H}}}{100\, \mathrm{cm}^{-3}}\right)^{-1/2}$|
Jeans lengthλJ, N =|$\left(\frac{3\pi \gamma X_{\mathrm{H}}k_{\mathrm{B}}T}{32 G m_{\mathrm{H}}^2 n_{\mathrm{H}}}\right)^{1/2} = 1.5\, \mathrm{pc} \left(\frac{T}{10\, \mathrm{K}}\right)^{1/2} \left(\frac{n_{\mathrm{H}}}{100 \, \mathrm{cm}^{-3}}\right)^{-1/2}$|
Jeans massMJ, N =|$\frac{4\pi \rho }{3} \lambda _{\mathrm{J,N}}^3 = 46 \, \mathrm{M}_{\odot } \, \left(\frac{T}{10\, \mathrm{K}} \right)^{3/2} \left(\frac{n_{\mathrm{H}}}{100\, \mathrm{cm}^{-3}}\right)^{-1/2}$|
Plummer softening with softening scale ϵ = ϵPlummer
PotentialφP(r, ϵ) =GM(r2 + ϵ2)−1/2
Acceleration|aP(r, ϵ)| =GMr(r2 + ϵ2)−3/2
Free-fall timetff, P, fit =|$t_{\mathrm{ff,N}} \left(1 + 2^{2/3} \left(\frac{\epsilon }{R} \right)^{2} \right)^{3/4}$|
Jeans lengthλJ, P, fit =|$\lambda _{\mathrm{J,N}} \left(1 + 1.42 \left(\frac{\epsilon }{\lambda _{\mathrm{J,N}}}\right)^{3/2} \right)^{2/5}$|
Jeans massMJ, P, fit =|$M_{\mathrm{J,N}} \left(1 + 1.42 \left(\frac{\epsilon }{\lambda _{\mathrm{J,N}}}\right)^{3/2}\right)^{6/5}$|
Wendland C2/Swift softening with softening scale H = 3ϵ = ϵPlummer and u = r/H
PotentialφW(r < H, H) =GMH−1W(u)
   with W(u) =(− 3u7 + 15u6 − 28u5 + 21u4 − 7u2 + 3)
φW(rH) =GMr−1
Acceleration|aW(r < H, H)| =GMrH−3V(u)
   with V(u) =W′(u)/u  = (21u5 − 90u4 + 140u3 − 84u2 + 14)
|aW(rH)| =GMr−2
Free-fall timetff, W, fit =|$t_{\mathrm{ff,N}} \left(1 + \frac{1}{7} \left(\frac{H}{R} \right)^{3} \right)^{1/2}$|  = |$t_{\mathrm{ff,N}} \left(1 + \frac{27}{7} \left(\frac{\epsilon }{R} \right)^{3} \right)^{1/2}$|
Jeans lengthλJ, W, fit =|$\lambda _{\mathrm{J,N}} \left(1 + 0.27 \left(\frac{H}{\lambda _{\mathrm{J,N}}}\right)^2 \right)^{3/10}$|  = |$\lambda _{\mathrm{J,N}} \left(1 + 2.43 \left(\frac{\epsilon }{\lambda _{\mathrm{J,N}}}\right)^2 \right)^{3/10}$|
Jeans massMJ, W, fit =|$M_{\mathrm{J,N}} \left(1 + 0.27 \left(\frac{H}{\lambda _{\mathrm{J,N}}}\right)^2\right)^{9/10}$|  = |$M_{\mathrm{J,N}} \left(1 + 2.43 \left(\frac{\epsilon }{\lambda _{\mathrm{J,N}}}\right)^2\right)^{9/10}$|
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close