Table 1.

Best-fitting result of the average Chandra point source spectrum.*

Interstellar absorption
N  H (10|$^{22}\:$|cm|$^{2}$|⁠)0.053 (⁠|$\lt $|0.252)
Plasma component
|$kT$| (keV)|$0.74\pm 0.10$|
Z (solar)0.3 (fixed)
Normalization|$3.5^{+4.6}_{-1.2}\times 10^{-7}$|
Gaussian component
|$E_{\rm center}$|1.04|$^{+0.03}_{-0.02}$|
|$\sigma$|0 (fixed)
Normalization (photon|$\:$|s|$^{-1}\:$|cm|$^{-2}$|⁠)1.5|$^{+0.3}_{-0.1}\times 10^{-8}$|
Power law component
|$\Gamma$||$1.0\pm 0.1$|
Normalization (keV|$^{-1}$| s|$^{-1}\:$|cm|$^{-2}$| at 1|$\:$|keV)2.1|$^{+0.3}_{-0.2}\times 10^{-7}$|
X-ray flux, luminosity
|$F_{\rm X}$| in 0.3–7|$\:$|keV (erg|$\:$|s|$^{-1}\:$|cm|$^{-2}$|⁠)2.3 |$\times 10^{-15}$|
|$L_{\rm X}$| in 0.3–7|$\:$|keV (erg|$\:$|s|$^{-1}$|⁠)3.6 |$\times 10^{29}$|
|$\chi ^{2}/$|d.o.f1.28
d.o.f19
Interstellar absorption
N  H (10|$^{22}\:$|cm|$^{2}$|⁠)0.053 (⁠|$\lt $|0.252)
Plasma component
|$kT$| (keV)|$0.74\pm 0.10$|
Z (solar)0.3 (fixed)
Normalization|$3.5^{+4.6}_{-1.2}\times 10^{-7}$|
Gaussian component
|$E_{\rm center}$|1.04|$^{+0.03}_{-0.02}$|
|$\sigma$|0 (fixed)
Normalization (photon|$\:$|s|$^{-1}\:$|cm|$^{-2}$|⁠)1.5|$^{+0.3}_{-0.1}\times 10^{-8}$|
Power law component
|$\Gamma$||$1.0\pm 0.1$|
Normalization (keV|$^{-1}$| s|$^{-1}\:$|cm|$^{-2}$| at 1|$\:$|keV)2.1|$^{+0.3}_{-0.2}\times 10^{-7}$|
X-ray flux, luminosity
|$F_{\rm X}$| in 0.3–7|$\:$|keV (erg|$\:$|s|$^{-1}\:$|cm|$^{-2}$|⁠)2.3 |$\times 10^{-15}$|
|$L_{\rm X}$| in 0.3–7|$\:$|keV (erg|$\:$|s|$^{-1}$|⁠)3.6 |$\times 10^{29}$|
|$\chi ^{2}/$|d.o.f1.28
d.o.f19

*The model assumes tbabs (apec |$+$| Gaussian |$+$| power-law).

The normalization is defined as |$10^{-14}/(4\pi D^2){\it {EM}}$|⁠, where D is the distance to the Carina Nebula in cm and |${\it EM}$| is the plasma emission measure in cm|$^{-3}$|⁠. The elemental abundances are given relative to the solar photospheric values measured by Anders and Grevesse (1989).

A distance of |$2.3\:$|kpc is assumed. The total flux and luminosity of all point sources are |$\times 400$| of these values.

Table 1.

Best-fitting result of the average Chandra point source spectrum.*

Interstellar absorption
N  H (10|$^{22}\:$|cm|$^{2}$|⁠)0.053 (⁠|$\lt $|0.252)
Plasma component
|$kT$| (keV)|$0.74\pm 0.10$|
Z (solar)0.3 (fixed)
Normalization|$3.5^{+4.6}_{-1.2}\times 10^{-7}$|
Gaussian component
|$E_{\rm center}$|1.04|$^{+0.03}_{-0.02}$|
|$\sigma$|0 (fixed)
Normalization (photon|$\:$|s|$^{-1}\:$|cm|$^{-2}$|⁠)1.5|$^{+0.3}_{-0.1}\times 10^{-8}$|
Power law component
|$\Gamma$||$1.0\pm 0.1$|
Normalization (keV|$^{-1}$| s|$^{-1}\:$|cm|$^{-2}$| at 1|$\:$|keV)2.1|$^{+0.3}_{-0.2}\times 10^{-7}$|
X-ray flux, luminosity
|$F_{\rm X}$| in 0.3–7|$\:$|keV (erg|$\:$|s|$^{-1}\:$|cm|$^{-2}$|⁠)2.3 |$\times 10^{-15}$|
|$L_{\rm X}$| in 0.3–7|$\:$|keV (erg|$\:$|s|$^{-1}$|⁠)3.6 |$\times 10^{29}$|
|$\chi ^{2}/$|d.o.f1.28
d.o.f19
Interstellar absorption
N  H (10|$^{22}\:$|cm|$^{2}$|⁠)0.053 (⁠|$\lt $|0.252)
Plasma component
|$kT$| (keV)|$0.74\pm 0.10$|
Z (solar)0.3 (fixed)
Normalization|$3.5^{+4.6}_{-1.2}\times 10^{-7}$|
Gaussian component
|$E_{\rm center}$|1.04|$^{+0.03}_{-0.02}$|
|$\sigma$|0 (fixed)
Normalization (photon|$\:$|s|$^{-1}\:$|cm|$^{-2}$|⁠)1.5|$^{+0.3}_{-0.1}\times 10^{-8}$|
Power law component
|$\Gamma$||$1.0\pm 0.1$|
Normalization (keV|$^{-1}$| s|$^{-1}\:$|cm|$^{-2}$| at 1|$\:$|keV)2.1|$^{+0.3}_{-0.2}\times 10^{-7}$|
X-ray flux, luminosity
|$F_{\rm X}$| in 0.3–7|$\:$|keV (erg|$\:$|s|$^{-1}\:$|cm|$^{-2}$|⁠)2.3 |$\times 10^{-15}$|
|$L_{\rm X}$| in 0.3–7|$\:$|keV (erg|$\:$|s|$^{-1}$|⁠)3.6 |$\times 10^{29}$|
|$\chi ^{2}/$|d.o.f1.28
d.o.f19

*The model assumes tbabs (apec |$+$| Gaussian |$+$| power-law).

The normalization is defined as |$10^{-14}/(4\pi D^2){\it {EM}}$|⁠, where D is the distance to the Carina Nebula in cm and |${\it EM}$| is the plasma emission measure in cm|$^{-3}$|⁠. The elemental abundances are given relative to the solar photospheric values measured by Anders and Grevesse (1989).

A distance of |$2.3\:$|kpc is assumed. The total flux and luminosity of all point sources are |$\times 400$| of these values.

Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close