The same as in Table 2, but for two redshift intervals z < 0.1 and 0.1 < z < 0.2 presented in Fig. 10.
z interval . | No. . | Stellar mass range . | Slope . | Intercept . | F-statistic . | P-value (F-statistic) . | R2 . | N . |
---|---|---|---|---|---|---|---|---|
z < 0.1 | 1 | |$10.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 10.5$| | 0.04 ± 0.14 | −3.32 ± 0.15 | 0.08 | 0.7901 | 0.01 | 9 |
2 | |$10.5 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.0$| | 0.32 ± 0.10 | −3.53 ± 0.10 | 10.71 | 0.0170 | 0.64 | 8 | |
[0.36 ± 0.10] | [−3.49 ± 0.09] | [14.30] | [0.0129] | [0.74] | [7] | |||
3 | |$11.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.5$| | 0.16 ± 0.12 | −3.97 ± 0.12 | 1.87 | 0.2211 | 0.24 | 8 | |
[0.42 ± 0.08] | [−3.72 ± 0.08] | [30.15] | [0.0027] | [0.86] | [7] | |||
4 | |$\log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \gt 11.5$| | – | – | – | – | – | – | |
0.1 < z < 0.2 | 1 | |$10.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 10.5$| | – | – | – | – | – | – |
2 | |$10.5 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.0$| | 0.16 ± 0.08 | −2.98 ± 0.07 | 3.56 | 0.0961 | 0.31 | 10 | |
[0.25 ± 0.05] | [−2.95 ± 0.04] | [23.39] | [0.0029] | [0.80] | [8] | |||
3 | |$11.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.5$| | 0.35 ± 0.05 | −3.27 ± 0.05 | 41.53 | 0.0007 | 0.87 | 8 | |
[0.39 ± 0.05] | [−3.24 ± 0.04] | [61.63] | [0.0005] | [0.93] | [7] | |||
4 | |$\log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \gt 11.5$| | 0.77 ± 0.08 | −3.32 ± 0.07 | 95.52 | 0.0103 | 0.98 | 4 |
z interval . | No. . | Stellar mass range . | Slope . | Intercept . | F-statistic . | P-value (F-statistic) . | R2 . | N . |
---|---|---|---|---|---|---|---|---|
z < 0.1 | 1 | |$10.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 10.5$| | 0.04 ± 0.14 | −3.32 ± 0.15 | 0.08 | 0.7901 | 0.01 | 9 |
2 | |$10.5 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.0$| | 0.32 ± 0.10 | −3.53 ± 0.10 | 10.71 | 0.0170 | 0.64 | 8 | |
[0.36 ± 0.10] | [−3.49 ± 0.09] | [14.30] | [0.0129] | [0.74] | [7] | |||
3 | |$11.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.5$| | 0.16 ± 0.12 | −3.97 ± 0.12 | 1.87 | 0.2211 | 0.24 | 8 | |
[0.42 ± 0.08] | [−3.72 ± 0.08] | [30.15] | [0.0027] | [0.86] | [7] | |||
4 | |$\log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \gt 11.5$| | – | – | – | – | – | – | |
0.1 < z < 0.2 | 1 | |$10.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 10.5$| | – | – | – | – | – | – |
2 | |$10.5 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.0$| | 0.16 ± 0.08 | −2.98 ± 0.07 | 3.56 | 0.0961 | 0.31 | 10 | |
[0.25 ± 0.05] | [−2.95 ± 0.04] | [23.39] | [0.0029] | [0.80] | [8] | |||
3 | |$11.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.5$| | 0.35 ± 0.05 | −3.27 ± 0.05 | 41.53 | 0.0007 | 0.87 | 8 | |
[0.39 ± 0.05] | [−3.24 ± 0.04] | [61.63] | [0.0005] | [0.93] | [7] | |||
4 | |$\log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \gt 11.5$| | 0.77 ± 0.08 | −3.32 ± 0.07 | 95.52 | 0.0103 | 0.98 | 4 |
Note. The values in square brackets correspond to the best-fitting parameters obtained from a linear |$\langle \log \, \lambda _{\rm sBHAR}\rangle$|–|$\log \, {\rm SFR}$| relation considering only points with |$\log \, {\rm SFR} \lt 1.0$|.
The same as in Table 2, but for two redshift intervals z < 0.1 and 0.1 < z < 0.2 presented in Fig. 10.
z interval . | No. . | Stellar mass range . | Slope . | Intercept . | F-statistic . | P-value (F-statistic) . | R2 . | N . |
---|---|---|---|---|---|---|---|---|
z < 0.1 | 1 | |$10.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 10.5$| | 0.04 ± 0.14 | −3.32 ± 0.15 | 0.08 | 0.7901 | 0.01 | 9 |
2 | |$10.5 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.0$| | 0.32 ± 0.10 | −3.53 ± 0.10 | 10.71 | 0.0170 | 0.64 | 8 | |
[0.36 ± 0.10] | [−3.49 ± 0.09] | [14.30] | [0.0129] | [0.74] | [7] | |||
3 | |$11.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.5$| | 0.16 ± 0.12 | −3.97 ± 0.12 | 1.87 | 0.2211 | 0.24 | 8 | |
[0.42 ± 0.08] | [−3.72 ± 0.08] | [30.15] | [0.0027] | [0.86] | [7] | |||
4 | |$\log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \gt 11.5$| | – | – | – | – | – | – | |
0.1 < z < 0.2 | 1 | |$10.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 10.5$| | – | – | – | – | – | – |
2 | |$10.5 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.0$| | 0.16 ± 0.08 | −2.98 ± 0.07 | 3.56 | 0.0961 | 0.31 | 10 | |
[0.25 ± 0.05] | [−2.95 ± 0.04] | [23.39] | [0.0029] | [0.80] | [8] | |||
3 | |$11.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.5$| | 0.35 ± 0.05 | −3.27 ± 0.05 | 41.53 | 0.0007 | 0.87 | 8 | |
[0.39 ± 0.05] | [−3.24 ± 0.04] | [61.63] | [0.0005] | [0.93] | [7] | |||
4 | |$\log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \gt 11.5$| | 0.77 ± 0.08 | −3.32 ± 0.07 | 95.52 | 0.0103 | 0.98 | 4 |
z interval . | No. . | Stellar mass range . | Slope . | Intercept . | F-statistic . | P-value (F-statistic) . | R2 . | N . |
---|---|---|---|---|---|---|---|---|
z < 0.1 | 1 | |$10.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 10.5$| | 0.04 ± 0.14 | −3.32 ± 0.15 | 0.08 | 0.7901 | 0.01 | 9 |
2 | |$10.5 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.0$| | 0.32 ± 0.10 | −3.53 ± 0.10 | 10.71 | 0.0170 | 0.64 | 8 | |
[0.36 ± 0.10] | [−3.49 ± 0.09] | [14.30] | [0.0129] | [0.74] | [7] | |||
3 | |$11.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.5$| | 0.16 ± 0.12 | −3.97 ± 0.12 | 1.87 | 0.2211 | 0.24 | 8 | |
[0.42 ± 0.08] | [−3.72 ± 0.08] | [30.15] | [0.0027] | [0.86] | [7] | |||
4 | |$\log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \gt 11.5$| | – | – | – | – | – | – | |
0.1 < z < 0.2 | 1 | |$10.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 10.5$| | – | – | – | – | – | – |
2 | |$10.5 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.0$| | 0.16 ± 0.08 | −2.98 ± 0.07 | 3.56 | 0.0961 | 0.31 | 10 | |
[0.25 ± 0.05] | [−2.95 ± 0.04] | [23.39] | [0.0029] | [0.80] | [8] | |||
3 | |$11.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.5$| | 0.35 ± 0.05 | −3.27 ± 0.05 | 41.53 | 0.0007 | 0.87 | 8 | |
[0.39 ± 0.05] | [−3.24 ± 0.04] | [61.63] | [0.0005] | [0.93] | [7] | |||
4 | |$\log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \gt 11.5$| | 0.77 ± 0.08 | −3.32 ± 0.07 | 95.52 | 0.0103 | 0.98 | 4 |
Note. The values in square brackets correspond to the best-fitting parameters obtained from a linear |$\langle \log \, \lambda _{\rm sBHAR}\rangle$|–|$\log \, {\rm SFR}$| relation considering only points with |$\log \, {\rm SFR} \lt 1.0$|.
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.