Table 3.

The same as in Table 2, but for two redshift intervals z < 0.1 and 0.1 < z < 0.2 presented in Fig. 10.

z intervalNo.Stellar mass rangeSlopeInterceptF-statisticP-value (F-statistic)R2N
z < 0.11|$10.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 10.5$|0.04 ± 0.14−3.32 ± 0.150.080.79010.019
2|$10.5 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.0$|0.32 ± 0.10−3.53 ± 0.1010.710.01700.648
[0.36 ± 0.10][−3.49 ± 0.09][14.30][0.0129][0.74][7]
3|$11.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.5$|0.16 ± 0.12−3.97 ± 0.121.870.22110.248
[0.42 ± 0.08][−3.72 ± 0.08][30.15][0.0027][0.86][7]
4|$\log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \gt 11.5$|
0.1 < z < 0.21|$10.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 10.5$|
2|$10.5 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.0$|0.16 ± 0.08−2.98 ± 0.073.560.09610.3110
[0.25 ± 0.05][−2.95 ± 0.04][23.39][0.0029][0.80][8]
3|$11.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.5$|0.35 ± 0.05−3.27 ± 0.0541.530.00070.878
[0.39 ± 0.05][−3.24 ± 0.04][61.63][0.0005][0.93][7]
4|$\log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \gt 11.5$|0.77 ± 0.08−3.32 ± 0.0795.520.01030.984
z intervalNo.Stellar mass rangeSlopeInterceptF-statisticP-value (F-statistic)R2N
z < 0.11|$10.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 10.5$|0.04 ± 0.14−3.32 ± 0.150.080.79010.019
2|$10.5 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.0$|0.32 ± 0.10−3.53 ± 0.1010.710.01700.648
[0.36 ± 0.10][−3.49 ± 0.09][14.30][0.0129][0.74][7]
3|$11.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.5$|0.16 ± 0.12−3.97 ± 0.121.870.22110.248
[0.42 ± 0.08][−3.72 ± 0.08][30.15][0.0027][0.86][7]
4|$\log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \gt 11.5$|
0.1 < z < 0.21|$10.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 10.5$|
2|$10.5 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.0$|0.16 ± 0.08−2.98 ± 0.073.560.09610.3110
[0.25 ± 0.05][−2.95 ± 0.04][23.39][0.0029][0.80][8]
3|$11.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.5$|0.35 ± 0.05−3.27 ± 0.0541.530.00070.878
[0.39 ± 0.05][−3.24 ± 0.04][61.63][0.0005][0.93][7]
4|$\log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \gt 11.5$|0.77 ± 0.08−3.32 ± 0.0795.520.01030.984

Note. The values in square brackets correspond to the best-fitting parameters obtained from a linear |$\langle \log \, \lambda _{\rm sBHAR}\rangle$||$\log \, {\rm SFR}$| relation considering only points with |$\log \, {\rm SFR} \lt 1.0$|⁠.

Table 3.

The same as in Table 2, but for two redshift intervals z < 0.1 and 0.1 < z < 0.2 presented in Fig. 10.

z intervalNo.Stellar mass rangeSlopeInterceptF-statisticP-value (F-statistic)R2N
z < 0.11|$10.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 10.5$|0.04 ± 0.14−3.32 ± 0.150.080.79010.019
2|$10.5 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.0$|0.32 ± 0.10−3.53 ± 0.1010.710.01700.648
[0.36 ± 0.10][−3.49 ± 0.09][14.30][0.0129][0.74][7]
3|$11.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.5$|0.16 ± 0.12−3.97 ± 0.121.870.22110.248
[0.42 ± 0.08][−3.72 ± 0.08][30.15][0.0027][0.86][7]
4|$\log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \gt 11.5$|
0.1 < z < 0.21|$10.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 10.5$|
2|$10.5 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.0$|0.16 ± 0.08−2.98 ± 0.073.560.09610.3110
[0.25 ± 0.05][−2.95 ± 0.04][23.39][0.0029][0.80][8]
3|$11.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.5$|0.35 ± 0.05−3.27 ± 0.0541.530.00070.878
[0.39 ± 0.05][−3.24 ± 0.04][61.63][0.0005][0.93][7]
4|$\log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \gt 11.5$|0.77 ± 0.08−3.32 ± 0.0795.520.01030.984
z intervalNo.Stellar mass rangeSlopeInterceptF-statisticP-value (F-statistic)R2N
z < 0.11|$10.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 10.5$|0.04 ± 0.14−3.32 ± 0.150.080.79010.019
2|$10.5 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.0$|0.32 ± 0.10−3.53 ± 0.1010.710.01700.648
[0.36 ± 0.10][−3.49 ± 0.09][14.30][0.0129][0.74][7]
3|$11.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.5$|0.16 ± 0.12−3.97 ± 0.121.870.22110.248
[0.42 ± 0.08][−3.72 ± 0.08][30.15][0.0027][0.86][7]
4|$\log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \gt 11.5$|
0.1 < z < 0.21|$10.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 10.5$|
2|$10.5 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.0$|0.16 ± 0.08−2.98 ± 0.073.560.09610.3110
[0.25 ± 0.05][−2.95 ± 0.04][23.39][0.0029][0.80][8]
3|$11.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.5$|0.35 ± 0.05−3.27 ± 0.0541.530.00070.878
[0.39 ± 0.05][−3.24 ± 0.04][61.63][0.0005][0.93][7]
4|$\log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \gt 11.5$|0.77 ± 0.08−3.32 ± 0.0795.520.01030.984

Note. The values in square brackets correspond to the best-fitting parameters obtained from a linear |$\langle \log \, \lambda _{\rm sBHAR}\rangle$||$\log \, {\rm SFR}$| relation considering only points with |$\log \, {\rm SFR} \lt 1.0$|⁠.

Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close