The best-fitting parameters obtained from a linear relation between |$\langle \log \, \lambda _{\mathrm{sBHAR}}\rangle$| and |$\log \, \mathrm{SFR}$| for four stellar mass ranges for the CSC+XMM sample (see Fig. 8).
No. . | Stellar mass range . | Slope . | Intercept . | F-statistic . | P-value (F-statistic) . | R2 . | N . |
---|---|---|---|---|---|---|---|
1 | |$10.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 10.5$| | 0.05 ± 0.13 | −3.29 ± 0.14 | 0.14 | 0.7231 | 0.02 | 10 |
2 | |$10.5 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.0$| | 0.34 ± 0.07 | −3.31 ± 0.07 | 22.44 | 0.0015 | 0.74 | 10 |
3 | |$11.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.5$| | 0.43 ± 0.05 | −3.38 ± 0.05 | 72.58 | 6.1 × 10−5 | 0.91 | 9 |
4 | |$\log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \gt 11.5$| | 0.28 ± 0.18 | −3.65 ± 0.13 | 2.61 | 0.1670 | 0.34 | 7 |
No. . | Stellar mass range . | Slope . | Intercept . | F-statistic . | P-value (F-statistic) . | R2 . | N . |
---|---|---|---|---|---|---|---|
1 | |$10.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 10.5$| | 0.05 ± 0.13 | −3.29 ± 0.14 | 0.14 | 0.7231 | 0.02 | 10 |
2 | |$10.5 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.0$| | 0.34 ± 0.07 | −3.31 ± 0.07 | 22.44 | 0.0015 | 0.74 | 10 |
3 | |$11.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.5$| | 0.43 ± 0.05 | −3.38 ± 0.05 | 72.58 | 6.1 × 10−5 | 0.91 | 9 |
4 | |$\log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \gt 11.5$| | 0.28 ± 0.18 | −3.65 ± 0.13 | 2.61 | 0.1670 | 0.34 | 7 |
Notes. The slope, intercept with their standard errors, and all statistics parameters (F-statistic, P-value, and R2) were found from the least-square linear regression. In this work, we consider the confidence level as P-value < 0.05. N is the number of points in each stellar mass bin.
The best-fitting parameters obtained from a linear relation between |$\langle \log \, \lambda _{\mathrm{sBHAR}}\rangle$| and |$\log \, \mathrm{SFR}$| for four stellar mass ranges for the CSC+XMM sample (see Fig. 8).
No. . | Stellar mass range . | Slope . | Intercept . | F-statistic . | P-value (F-statistic) . | R2 . | N . |
---|---|---|---|---|---|---|---|
1 | |$10.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 10.5$| | 0.05 ± 0.13 | −3.29 ± 0.14 | 0.14 | 0.7231 | 0.02 | 10 |
2 | |$10.5 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.0$| | 0.34 ± 0.07 | −3.31 ± 0.07 | 22.44 | 0.0015 | 0.74 | 10 |
3 | |$11.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.5$| | 0.43 ± 0.05 | −3.38 ± 0.05 | 72.58 | 6.1 × 10−5 | 0.91 | 9 |
4 | |$\log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \gt 11.5$| | 0.28 ± 0.18 | −3.65 ± 0.13 | 2.61 | 0.1670 | 0.34 | 7 |
No. . | Stellar mass range . | Slope . | Intercept . | F-statistic . | P-value (F-statistic) . | R2 . | N . |
---|---|---|---|---|---|---|---|
1 | |$10.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 10.5$| | 0.05 ± 0.13 | −3.29 ± 0.14 | 0.14 | 0.7231 | 0.02 | 10 |
2 | |$10.5 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.0$| | 0.34 ± 0.07 | −3.31 ± 0.07 | 22.44 | 0.0015 | 0.74 | 10 |
3 | |$11.0 \lt \log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \lt 11.5$| | 0.43 ± 0.05 | −3.38 ± 0.05 | 72.58 | 6.1 × 10−5 | 0.91 | 9 |
4 | |$\log \, [\mathcal {M}_{\ast }/\mathcal {M}_{\odot }] \gt 11.5$| | 0.28 ± 0.18 | −3.65 ± 0.13 | 2.61 | 0.1670 | 0.34 | 7 |
Notes. The slope, intercept with their standard errors, and all statistics parameters (F-statistic, P-value, and R2) were found from the least-square linear regression. In this work, we consider the confidence level as P-value < 0.05. N is the number of points in each stellar mass bin.
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.