Table 1.

Parameters for the analysis.

ParameterSymbolFixed valueNotes*
Mean stellar densityρsa
Stellar effective temperature at the poleT  pol3470 Kb
Stellar rotation periodP  s
Time of inferior conjunctiont  c2455543.9402 HJDc, d
Stellar inclination at tci  se
Stellar moment of inertia coefficientC0.059f
Limb-darkening parameterc  1 = u1 + u20.735f
Limb-darkening parameterc  2 = u1u20.0
Gravity-darkening parameterβ0.25f
Planet-to-star mass ratioM  p/Ms
Planet-to-star radius ratioR  p/Rsa
Planetary orbital periodP  orb0.448413 dd
Orbital eccentricitye cos ω0g
Orbital eccentricitye sin ω0g
Planetary orbital inclination at tci  orbe
Longitude of the ascending node at tcΩe
ParameterSymbolFixed valueNotes*
Mean stellar densityρsa
Stellar effective temperature at the poleT  pol3470 Kb
Stellar rotation periodP  s
Time of inferior conjunctiont  c2455543.9402 HJDc, d
Stellar inclination at tci  se
Stellar moment of inertia coefficientC0.059f
Limb-darkening parameterc  1 = u1 + u20.735f
Limb-darkening parameterc  2 = u1u20.0
Gravity-darkening parameterβ0.25f
Planet-to-star mass ratioM  p/Ms
Planet-to-star radius ratioR  p/Rsa
Planetary orbital periodP  orb0.448413 dd
Orbital eccentricitye cos ω0g
Orbital eccentricitye sin ω0g
Planetary orbital inclination at tci  orbe
Longitude of the ascending node at tcΩe

*(a) Specified by stellar equatorial radius Rs, eq; |$M_{\rm {s}}/\frac{4}{3}{\pi }R_{\rm {s},\rm {eq}}^3$| or Rp/Rs, eq. (b) Briceño et al. (2005) reported 3470 K as the stellar effective temperature, but we use that value as polar temperature assuming that their difference in the analysis is negligible. (c) An epoch when ω + f = π/2. (d) van Eyken et al. (2012). (e) Barnes et al. (2013) adopt different notations for these three angular parameters (stellar obliquity ψ, planetary orbital inclination i, projected spin–orbit angle λ) from ours, and they are related as ψ = is − π/2, i = π − iorb, and λ = π − Ω. (f) Barnes et al. (2013). (g) We assume a circular orbit following Barnes et al. (2013). This assumption is supported by an equilibrium tidal theory, which predicts that a close-in planet acquires the circular orbit on a much shorter time scale than those for spin–orbit synchronization or alignment.

Table 1.

Parameters for the analysis.

ParameterSymbolFixed valueNotes*
Mean stellar densityρsa
Stellar effective temperature at the poleT  pol3470 Kb
Stellar rotation periodP  s
Time of inferior conjunctiont  c2455543.9402 HJDc, d
Stellar inclination at tci  se
Stellar moment of inertia coefficientC0.059f
Limb-darkening parameterc  1 = u1 + u20.735f
Limb-darkening parameterc  2 = u1u20.0
Gravity-darkening parameterβ0.25f
Planet-to-star mass ratioM  p/Ms
Planet-to-star radius ratioR  p/Rsa
Planetary orbital periodP  orb0.448413 dd
Orbital eccentricitye cos ω0g
Orbital eccentricitye sin ω0g
Planetary orbital inclination at tci  orbe
Longitude of the ascending node at tcΩe
ParameterSymbolFixed valueNotes*
Mean stellar densityρsa
Stellar effective temperature at the poleT  pol3470 Kb
Stellar rotation periodP  s
Time of inferior conjunctiont  c2455543.9402 HJDc, d
Stellar inclination at tci  se
Stellar moment of inertia coefficientC0.059f
Limb-darkening parameterc  1 = u1 + u20.735f
Limb-darkening parameterc  2 = u1u20.0
Gravity-darkening parameterβ0.25f
Planet-to-star mass ratioM  p/Ms
Planet-to-star radius ratioR  p/Rsa
Planetary orbital periodP  orb0.448413 dd
Orbital eccentricitye cos ω0g
Orbital eccentricitye sin ω0g
Planetary orbital inclination at tci  orbe
Longitude of the ascending node at tcΩe

*(a) Specified by stellar equatorial radius Rs, eq; |$M_{\rm {s}}/\frac{4}{3}{\pi }R_{\rm {s},\rm {eq}}^3$| or Rp/Rs, eq. (b) Briceño et al. (2005) reported 3470 K as the stellar effective temperature, but we use that value as polar temperature assuming that their difference in the analysis is negligible. (c) An epoch when ω + f = π/2. (d) van Eyken et al. (2012). (e) Barnes et al. (2013) adopt different notations for these three angular parameters (stellar obliquity ψ, planetary orbital inclination i, projected spin–orbit angle λ) from ours, and they are related as ψ = is − π/2, i = π − iorb, and λ = π − Ω. (f) Barnes et al. (2013). (g) We assume a circular orbit following Barnes et al. (2013). This assumption is supported by an equilibrium tidal theory, which predicts that a close-in planet acquires the circular orbit on a much shorter time scale than those for spin–orbit synchronization or alignment.

Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close