Parameter . | Symbol . | Fixed value . | Notes* . |
---|---|---|---|
Mean stellar density | ρs | – | a |
Stellar effective temperature at the pole | T pol | 3470 K | b |
Stellar rotation period | P s | – | |
Time of inferior conjunction | t c | 2455543.9402 HJD | c, d |
Stellar inclination at tc | i s | – | e |
Stellar moment of inertia coefficient | C | 0.059 | f |
Limb-darkening parameter | c 1 = u1 + u2 | 0.735 | f |
Limb-darkening parameter | c 2 = u1 − u2 | 0.0 | |
Gravity-darkening parameter | β | 0.25 | f |
Planet-to-star mass ratio | M p/Ms | – | |
Planet-to-star radius ratio | R p/Rs | – | a |
Planetary orbital period | P orb | 0.448413 d | d |
Orbital eccentricity | e cos ω | 0 | g |
Orbital eccentricity | e sin ω | 0 | g |
Planetary orbital inclination at tc | i orb | – | e |
Longitude of the ascending node at tc | Ω | – | e |
Parameter . | Symbol . | Fixed value . | Notes* . |
---|---|---|---|
Mean stellar density | ρs | – | a |
Stellar effective temperature at the pole | T pol | 3470 K | b |
Stellar rotation period | P s | – | |
Time of inferior conjunction | t c | 2455543.9402 HJD | c, d |
Stellar inclination at tc | i s | – | e |
Stellar moment of inertia coefficient | C | 0.059 | f |
Limb-darkening parameter | c 1 = u1 + u2 | 0.735 | f |
Limb-darkening parameter | c 2 = u1 − u2 | 0.0 | |
Gravity-darkening parameter | β | 0.25 | f |
Planet-to-star mass ratio | M p/Ms | – | |
Planet-to-star radius ratio | R p/Rs | – | a |
Planetary orbital period | P orb | 0.448413 d | d |
Orbital eccentricity | e cos ω | 0 | g |
Orbital eccentricity | e sin ω | 0 | g |
Planetary orbital inclination at tc | i orb | – | e |
Longitude of the ascending node at tc | Ω | – | e |
*(a) Specified by stellar equatorial radius Rs, eq; |$M_{\rm {s}}/\frac{4}{3}{\pi }R_{\rm {s},\rm {eq}}^3$| or Rp/Rs, eq. (b) Briceño et al. (2005) reported 3470 K as the stellar effective temperature, but we use that value as polar temperature assuming that their difference in the analysis is negligible. (c) An epoch when ω + f = π/2. (d) van Eyken et al. (2012). (e) Barnes et al. (2013) adopt different notations for these three angular parameters (stellar obliquity ψ, planetary orbital inclination i, projected spin–orbit angle λ) from ours, and they are related as ψ = is − π/2, i = π − iorb, and λ = π − Ω. (f) Barnes et al. (2013). (g) We assume a circular orbit following Barnes et al. (2013). This assumption is supported by an equilibrium tidal theory, which predicts that a close-in planet acquires the circular orbit on a much shorter time scale than those for spin–orbit synchronization or alignment.
Parameter . | Symbol . | Fixed value . | Notes* . |
---|---|---|---|
Mean stellar density | ρs | – | a |
Stellar effective temperature at the pole | T pol | 3470 K | b |
Stellar rotation period | P s | – | |
Time of inferior conjunction | t c | 2455543.9402 HJD | c, d |
Stellar inclination at tc | i s | – | e |
Stellar moment of inertia coefficient | C | 0.059 | f |
Limb-darkening parameter | c 1 = u1 + u2 | 0.735 | f |
Limb-darkening parameter | c 2 = u1 − u2 | 0.0 | |
Gravity-darkening parameter | β | 0.25 | f |
Planet-to-star mass ratio | M p/Ms | – | |
Planet-to-star radius ratio | R p/Rs | – | a |
Planetary orbital period | P orb | 0.448413 d | d |
Orbital eccentricity | e cos ω | 0 | g |
Orbital eccentricity | e sin ω | 0 | g |
Planetary orbital inclination at tc | i orb | – | e |
Longitude of the ascending node at tc | Ω | – | e |
Parameter . | Symbol . | Fixed value . | Notes* . |
---|---|---|---|
Mean stellar density | ρs | – | a |
Stellar effective temperature at the pole | T pol | 3470 K | b |
Stellar rotation period | P s | – | |
Time of inferior conjunction | t c | 2455543.9402 HJD | c, d |
Stellar inclination at tc | i s | – | e |
Stellar moment of inertia coefficient | C | 0.059 | f |
Limb-darkening parameter | c 1 = u1 + u2 | 0.735 | f |
Limb-darkening parameter | c 2 = u1 − u2 | 0.0 | |
Gravity-darkening parameter | β | 0.25 | f |
Planet-to-star mass ratio | M p/Ms | – | |
Planet-to-star radius ratio | R p/Rs | – | a |
Planetary orbital period | P orb | 0.448413 d | d |
Orbital eccentricity | e cos ω | 0 | g |
Orbital eccentricity | e sin ω | 0 | g |
Planetary orbital inclination at tc | i orb | – | e |
Longitude of the ascending node at tc | Ω | – | e |
*(a) Specified by stellar equatorial radius Rs, eq; |$M_{\rm {s}}/\frac{4}{3}{\pi }R_{\rm {s},\rm {eq}}^3$| or Rp/Rs, eq. (b) Briceño et al. (2005) reported 3470 K as the stellar effective temperature, but we use that value as polar temperature assuming that their difference in the analysis is negligible. (c) An epoch when ω + f = π/2. (d) van Eyken et al. (2012). (e) Barnes et al. (2013) adopt different notations for these three angular parameters (stellar obliquity ψ, planetary orbital inclination i, projected spin–orbit angle λ) from ours, and they are related as ψ = is − π/2, i = π − iorb, and λ = π − Ω. (f) Barnes et al. (2013). (g) We assume a circular orbit following Barnes et al. (2013). This assumption is supported by an equilibrium tidal theory, which predicts that a close-in planet acquires the circular orbit on a much shorter time scale than those for spin–orbit synchronization or alignment.
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.