Median values of optical depth, column density, and line-of-sight length for the different structures identified in velocity space.*
Structure . | Velocity range . | |$\tau _{^{13}\rm {CO}}$| . | |$\mathit {FWHM}_{^{13}\rm {CO}}$| . | 13 |$N_{\rm H_{2}}$| . | 13 l LOS . | |$\tau _{\rm {C}^{18}\rm {O}}$| . | |$\mathit {FWHM}_{\rm {C}^{18}\rm {O}}$| . | |$^{18}N_{\rm H_{2}}$| . | 18 l LOS . |
---|---|---|---|---|---|---|---|---|---|
. | [ km s−1] . | . | [ km s−1] . | [1021|$\rm \, cm^{-2}$| ] . | [pc] . | . | [ km s−1] . | [1021|$\rm \, cm^{-2}$| ] . | [pc] . |
(1) . | (2) . | (3) . | (4) . | (5) . | (6) . | (7) . | (8) . | (9) . | (10) . |
SB | B[4–5.4] | 0.80 | 0.68 | 1.73 | 0.28 | 0.15 | 0.70 | 3.82 | 0.25 |
MF | F1[5.4–6.2] | 0.75 | 0.51 | 1.31 | 0.21 | 0.20 | 0.44 | 3.06 | 0.20 |
SR1 | R1[6.2–7.2] | 0.79 | 0.68 | 1.76 | 0.29 | 0.21 | 0.58 | 4.35 | 0.28 |
SR2 | R2[7.2–8.1] | 1.09 | 0.66 | 2.45 | 0.40 | 0.16 | 0.47 | 2.80 | 0.18 |
YF | F2[8.1–8.7] | 0.67 | 0.42 | 0.97 | 0.16 | 0.14 | 0.40 | 1.98 | 0.13 |
All† | 0.79 | 0.66 | 1.73 | 0.28 | 0.16 | 0.47 | 3.06 | 0.20 |
Structure . | Velocity range . | |$\tau _{^{13}\rm {CO}}$| . | |$\mathit {FWHM}_{^{13}\rm {CO}}$| . | 13 |$N_{\rm H_{2}}$| . | 13 l LOS . | |$\tau _{\rm {C}^{18}\rm {O}}$| . | |$\mathit {FWHM}_{\rm {C}^{18}\rm {O}}$| . | |$^{18}N_{\rm H_{2}}$| . | 18 l LOS . |
---|---|---|---|---|---|---|---|---|---|
. | [ km s−1] . | . | [ km s−1] . | [1021|$\rm \, cm^{-2}$| ] . | [pc] . | . | [ km s−1] . | [1021|$\rm \, cm^{-2}$| ] . | [pc] . |
(1) . | (2) . | (3) . | (4) . | (5) . | (6) . | (7) . | (8) . | (9) . | (10) . |
SB | B[4–5.4] | 0.80 | 0.68 | 1.73 | 0.28 | 0.15 | 0.70 | 3.82 | 0.25 |
MF | F1[5.4–6.2] | 0.75 | 0.51 | 1.31 | 0.21 | 0.20 | 0.44 | 3.06 | 0.20 |
SR1 | R1[6.2–7.2] | 0.79 | 0.68 | 1.76 | 0.29 | 0.21 | 0.58 | 4.35 | 0.28 |
SR2 | R2[7.2–8.1] | 1.09 | 0.66 | 2.45 | 0.40 | 0.16 | 0.47 | 2.80 | 0.18 |
YF | F2[8.1–8.7] | 0.67 | 0.42 | 0.97 | 0.16 | 0.14 | 0.40 | 1.98 | 0.13 |
All† | 0.79 | 0.66 | 1.73 | 0.28 | 0.16 | 0.47 | 3.06 | 0.20 |
*The median values are computed over the observed field, for each velocity range, and for a signal-to-noise ratio |$\mathit {SNR}>5$|. (1) Name of the structure identified in the given velocity range. (2) Velocity range identified from the PV diagrams (see figure 5 and subsection 3.2). (3) Optical depth of the |$^{13}\rm {CO}$| emission calculated using equation (1) from Shimajiri et al. (2014), assuming an excitation temperature of 10 K in local thermodynamic equilibrium (LTE) conditions, and a filling factor of 1. The peak brightness temperature of the |$^{13}\rm {CO}$| emission over the observed region has been derived using the MOMENT task in MIRIAD for each velocity range. (4) |$\mathit {FWHM}$| line width of the |$^{13}\rm {CO}$| spectra derived using the MOMENT task in MIRIAD for each velocity range. (5) H2 molecular gas column density derived from |$^{13}\rm {CO}$| column densities calculated using equation (2) from Shimajiri et al. (2014), assuming a fractional abundance of |$^{13}\rm {CO}$| with respect to H2 of 1.7 × 10−6 (Frerking et al. 1982). (6) Extent of the emitting structure along the line of sight estimated from the column density given in (5) for a critical density of 2 × 103 cm−3. (7) to (10) Same as (3) to (6) for the C18O emission, with a fractional abundance of C18O with respect to H2 of 1.7 × 10−7 and a critical density of 5 × 103 cm−3.
†Median values for the five structures.
Median values of optical depth, column density, and line-of-sight length for the different structures identified in velocity space.*
Structure . | Velocity range . | |$\tau _{^{13}\rm {CO}}$| . | |$\mathit {FWHM}_{^{13}\rm {CO}}$| . | 13 |$N_{\rm H_{2}}$| . | 13 l LOS . | |$\tau _{\rm {C}^{18}\rm {O}}$| . | |$\mathit {FWHM}_{\rm {C}^{18}\rm {O}}$| . | |$^{18}N_{\rm H_{2}}$| . | 18 l LOS . |
---|---|---|---|---|---|---|---|---|---|
. | [ km s−1] . | . | [ km s−1] . | [1021|$\rm \, cm^{-2}$| ] . | [pc] . | . | [ km s−1] . | [1021|$\rm \, cm^{-2}$| ] . | [pc] . |
(1) . | (2) . | (3) . | (4) . | (5) . | (6) . | (7) . | (8) . | (9) . | (10) . |
SB | B[4–5.4] | 0.80 | 0.68 | 1.73 | 0.28 | 0.15 | 0.70 | 3.82 | 0.25 |
MF | F1[5.4–6.2] | 0.75 | 0.51 | 1.31 | 0.21 | 0.20 | 0.44 | 3.06 | 0.20 |
SR1 | R1[6.2–7.2] | 0.79 | 0.68 | 1.76 | 0.29 | 0.21 | 0.58 | 4.35 | 0.28 |
SR2 | R2[7.2–8.1] | 1.09 | 0.66 | 2.45 | 0.40 | 0.16 | 0.47 | 2.80 | 0.18 |
YF | F2[8.1–8.7] | 0.67 | 0.42 | 0.97 | 0.16 | 0.14 | 0.40 | 1.98 | 0.13 |
All† | 0.79 | 0.66 | 1.73 | 0.28 | 0.16 | 0.47 | 3.06 | 0.20 |
Structure . | Velocity range . | |$\tau _{^{13}\rm {CO}}$| . | |$\mathit {FWHM}_{^{13}\rm {CO}}$| . | 13 |$N_{\rm H_{2}}$| . | 13 l LOS . | |$\tau _{\rm {C}^{18}\rm {O}}$| . | |$\mathit {FWHM}_{\rm {C}^{18}\rm {O}}$| . | |$^{18}N_{\rm H_{2}}$| . | 18 l LOS . |
---|---|---|---|---|---|---|---|---|---|
. | [ km s−1] . | . | [ km s−1] . | [1021|$\rm \, cm^{-2}$| ] . | [pc] . | . | [ km s−1] . | [1021|$\rm \, cm^{-2}$| ] . | [pc] . |
(1) . | (2) . | (3) . | (4) . | (5) . | (6) . | (7) . | (8) . | (9) . | (10) . |
SB | B[4–5.4] | 0.80 | 0.68 | 1.73 | 0.28 | 0.15 | 0.70 | 3.82 | 0.25 |
MF | F1[5.4–6.2] | 0.75 | 0.51 | 1.31 | 0.21 | 0.20 | 0.44 | 3.06 | 0.20 |
SR1 | R1[6.2–7.2] | 0.79 | 0.68 | 1.76 | 0.29 | 0.21 | 0.58 | 4.35 | 0.28 |
SR2 | R2[7.2–8.1] | 1.09 | 0.66 | 2.45 | 0.40 | 0.16 | 0.47 | 2.80 | 0.18 |
YF | F2[8.1–8.7] | 0.67 | 0.42 | 0.97 | 0.16 | 0.14 | 0.40 | 1.98 | 0.13 |
All† | 0.79 | 0.66 | 1.73 | 0.28 | 0.16 | 0.47 | 3.06 | 0.20 |
*The median values are computed over the observed field, for each velocity range, and for a signal-to-noise ratio |$\mathit {SNR}>5$|. (1) Name of the structure identified in the given velocity range. (2) Velocity range identified from the PV diagrams (see figure 5 and subsection 3.2). (3) Optical depth of the |$^{13}\rm {CO}$| emission calculated using equation (1) from Shimajiri et al. (2014), assuming an excitation temperature of 10 K in local thermodynamic equilibrium (LTE) conditions, and a filling factor of 1. The peak brightness temperature of the |$^{13}\rm {CO}$| emission over the observed region has been derived using the MOMENT task in MIRIAD for each velocity range. (4) |$\mathit {FWHM}$| line width of the |$^{13}\rm {CO}$| spectra derived using the MOMENT task in MIRIAD for each velocity range. (5) H2 molecular gas column density derived from |$^{13}\rm {CO}$| column densities calculated using equation (2) from Shimajiri et al. (2014), assuming a fractional abundance of |$^{13}\rm {CO}$| with respect to H2 of 1.7 × 10−6 (Frerking et al. 1982). (6) Extent of the emitting structure along the line of sight estimated from the column density given in (5) for a critical density of 2 × 103 cm−3. (7) to (10) Same as (3) to (6) for the C18O emission, with a fractional abundance of C18O with respect to H2 of 1.7 × 10−7 and a critical density of 5 × 103 cm−3.
†Median values for the five structures.
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.