Initialize: |
Given initial guess |$\bf {m}_{0}$|, the observed data |$\bf {d}$|, the maximum |
number of iterations L, |$\bf {v}^{0}=\bf {u}_{0}=\rho _{0}=0$|, |
parameters |$\alpha$|, |$\beta$|, |$\gamma$|, and |$\epsilon$|. |
Iterate: for |$l=0,1, \cdots ,L-1$| |
(1) L-BFGS step: |
|$\bf {m}_{l+1}=\underset{\bf {m}}{\arg \min }\lbrace {\frac{1}{2}}\Vert {\bf {P}}A_{\omega }(\bf {m})^{-1}\bf {Q}-\bf {d}\Vert _{2}^{2}+{\frac{\rho _{l}}{2}\Vert {\bf {m}-\bf {v}^{l}+\bf {u}_{l}}\Vert _{2}^{2}}\rbrace$|; |
(2) Denoising steps: |
(a) |$\bf {v}_{1}=\mbox{TV}(\bf {m}_{l+1}-\bf {u}_{l},\sqrt{\frac{\alpha }{\rho _{l}}})$|; |
(b) |$\bf {v}_{2}=\mbox{BM3D}(\bf {v}_{1}-\bf {u}_{l},\sqrt{\frac{\beta }{\rho _{l}}})$|; |
(c) |$\bf {v}_{3}=\mbox{FFDNet}(\bf {v}_{2}-\bf {u}_{l},\sqrt{\frac{\gamma }{\rho _{l}}})$|. |
(3) Update step: |
Let |$\bf {v}^{l+1}=\bf {v}_{3}$|, |
|$\rho _{l+1}=(l+1)(1+\epsilon )^{l+1}$|, |
|$\bf {u}_{l+1}=\bf {u}_{l}+\rho _{l+1}(\bf {m}_{l+1}-\bf {v}^{l+1})$|; |
Output: The inversion result is |${\bf {v}}^{L}$|. |
Initialize: |
Given initial guess |$\bf {m}_{0}$|, the observed data |$\bf {d}$|, the maximum |
number of iterations L, |$\bf {v}^{0}=\bf {u}_{0}=\rho _{0}=0$|, |
parameters |$\alpha$|, |$\beta$|, |$\gamma$|, and |$\epsilon$|. |
Iterate: for |$l=0,1, \cdots ,L-1$| |
(1) L-BFGS step: |
|$\bf {m}_{l+1}=\underset{\bf {m}}{\arg \min }\lbrace {\frac{1}{2}}\Vert {\bf {P}}A_{\omega }(\bf {m})^{-1}\bf {Q}-\bf {d}\Vert _{2}^{2}+{\frac{\rho _{l}}{2}\Vert {\bf {m}-\bf {v}^{l}+\bf {u}_{l}}\Vert _{2}^{2}}\rbrace$|; |
(2) Denoising steps: |
(a) |$\bf {v}_{1}=\mbox{TV}(\bf {m}_{l+1}-\bf {u}_{l},\sqrt{\frac{\alpha }{\rho _{l}}})$|; |
(b) |$\bf {v}_{2}=\mbox{BM3D}(\bf {v}_{1}-\bf {u}_{l},\sqrt{\frac{\beta }{\rho _{l}}})$|; |
(c) |$\bf {v}_{3}=\mbox{FFDNet}(\bf {v}_{2}-\bf {u}_{l},\sqrt{\frac{\gamma }{\rho _{l}}})$|. |
(3) Update step: |
Let |$\bf {v}^{l+1}=\bf {v}_{3}$|, |
|$\rho _{l+1}=(l+1)(1+\epsilon )^{l+1}$|, |
|$\bf {u}_{l+1}=\bf {u}_{l}+\rho _{l+1}(\bf {m}_{l+1}-\bf {v}^{l+1})$|; |
Output: The inversion result is |${\bf {v}}^{L}$|. |
Initialize: |
Given initial guess |$\bf {m}_{0}$|, the observed data |$\bf {d}$|, the maximum |
number of iterations L, |$\bf {v}^{0}=\bf {u}_{0}=\rho _{0}=0$|, |
parameters |$\alpha$|, |$\beta$|, |$\gamma$|, and |$\epsilon$|. |
Iterate: for |$l=0,1, \cdots ,L-1$| |
(1) L-BFGS step: |
|$\bf {m}_{l+1}=\underset{\bf {m}}{\arg \min }\lbrace {\frac{1}{2}}\Vert {\bf {P}}A_{\omega }(\bf {m})^{-1}\bf {Q}-\bf {d}\Vert _{2}^{2}+{\frac{\rho _{l}}{2}\Vert {\bf {m}-\bf {v}^{l}+\bf {u}_{l}}\Vert _{2}^{2}}\rbrace$|; |
(2) Denoising steps: |
(a) |$\bf {v}_{1}=\mbox{TV}(\bf {m}_{l+1}-\bf {u}_{l},\sqrt{\frac{\alpha }{\rho _{l}}})$|; |
(b) |$\bf {v}_{2}=\mbox{BM3D}(\bf {v}_{1}-\bf {u}_{l},\sqrt{\frac{\beta }{\rho _{l}}})$|; |
(c) |$\bf {v}_{3}=\mbox{FFDNet}(\bf {v}_{2}-\bf {u}_{l},\sqrt{\frac{\gamma }{\rho _{l}}})$|. |
(3) Update step: |
Let |$\bf {v}^{l+1}=\bf {v}_{3}$|, |
|$\rho _{l+1}=(l+1)(1+\epsilon )^{l+1}$|, |
|$\bf {u}_{l+1}=\bf {u}_{l}+\rho _{l+1}(\bf {m}_{l+1}-\bf {v}^{l+1})$|; |
Output: The inversion result is |${\bf {v}}^{L}$|. |
Initialize: |
Given initial guess |$\bf {m}_{0}$|, the observed data |$\bf {d}$|, the maximum |
number of iterations L, |$\bf {v}^{0}=\bf {u}_{0}=\rho _{0}=0$|, |
parameters |$\alpha$|, |$\beta$|, |$\gamma$|, and |$\epsilon$|. |
Iterate: for |$l=0,1, \cdots ,L-1$| |
(1) L-BFGS step: |
|$\bf {m}_{l+1}=\underset{\bf {m}}{\arg \min }\lbrace {\frac{1}{2}}\Vert {\bf {P}}A_{\omega }(\bf {m})^{-1}\bf {Q}-\bf {d}\Vert _{2}^{2}+{\frac{\rho _{l}}{2}\Vert {\bf {m}-\bf {v}^{l}+\bf {u}_{l}}\Vert _{2}^{2}}\rbrace$|; |
(2) Denoising steps: |
(a) |$\bf {v}_{1}=\mbox{TV}(\bf {m}_{l+1}-\bf {u}_{l},\sqrt{\frac{\alpha }{\rho _{l}}})$|; |
(b) |$\bf {v}_{2}=\mbox{BM3D}(\bf {v}_{1}-\bf {u}_{l},\sqrt{\frac{\beta }{\rho _{l}}})$|; |
(c) |$\bf {v}_{3}=\mbox{FFDNet}(\bf {v}_{2}-\bf {u}_{l},\sqrt{\frac{\gamma }{\rho _{l}}})$|. |
(3) Update step: |
Let |$\bf {v}^{l+1}=\bf {v}_{3}$|, |
|$\rho _{l+1}=(l+1)(1+\epsilon )^{l+1}$|, |
|$\bf {u}_{l+1}=\bf {u}_{l}+\rho _{l+1}(\bf {m}_{l+1}-\bf {v}^{l+1})$|; |
Output: The inversion result is |${\bf {v}}^{L}$|. |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.