Algorithm 2

PPR–FWI method

Initialize:
Given initial guess |$\bf {m}_{0}$|⁠, the observed data |$\bf {d}$|⁠, the maximum
number of iterations L, |$\bf {v}^{0}=\bf {u}_{0}=\rho _{0}=0$|⁠,
parameters |$\alpha$|⁠, |$\beta$|⁠, |$\gamma$|⁠, and |$\epsilon$|⁠.
Iterate: for |$l=0,1, \cdots ,L-1$|
(1) L-BFGS step:
|$\bf {m}_{l+1}=\underset{\bf {m}}{\arg \min }\lbrace {\frac{1}{2}}\Vert {\bf {P}}A_{\omega }(\bf {m})^{-1}\bf {Q}-\bf {d}\Vert _{2}^{2}+{\frac{\rho _{l}}{2}\Vert {\bf {m}-\bf {v}^{l}+\bf {u}_{l}}\Vert _{2}^{2}}\rbrace$|⁠;
(2) Denoising steps:
 (a) |$\bf {v}_{1}=\mbox{TV}(\bf {m}_{l+1}-\bf {u}_{l},\sqrt{\frac{\alpha }{\rho _{l}}})$|⁠;
 (b) |$\bf {v}_{2}=\mbox{BM3D}(\bf {v}_{1}-\bf {u}_{l},\sqrt{\frac{\beta }{\rho _{l}}})$|⁠;
 (c) |$\bf {v}_{3}=\mbox{FFDNet}(\bf {v}_{2}-\bf {u}_{l},\sqrt{\frac{\gamma }{\rho _{l}}})$|⁠.
(3) Update step:
 Let |$\bf {v}^{l+1}=\bf {v}_{3}$|⁠,
|$\rho _{l+1}=(l+1)(1+\epsilon )^{l+1}$|⁠,
|$\bf {u}_{l+1}=\bf {u}_{l}+\rho _{l+1}(\bf {m}_{l+1}-\bf {v}^{l+1})$|⁠;
Output: The inversion result is |${\bf {v}}^{L}$|⁠.
Initialize:
Given initial guess |$\bf {m}_{0}$|⁠, the observed data |$\bf {d}$|⁠, the maximum
number of iterations L, |$\bf {v}^{0}=\bf {u}_{0}=\rho _{0}=0$|⁠,
parameters |$\alpha$|⁠, |$\beta$|⁠, |$\gamma$|⁠, and |$\epsilon$|⁠.
Iterate: for |$l=0,1, \cdots ,L-1$|
(1) L-BFGS step:
|$\bf {m}_{l+1}=\underset{\bf {m}}{\arg \min }\lbrace {\frac{1}{2}}\Vert {\bf {P}}A_{\omega }(\bf {m})^{-1}\bf {Q}-\bf {d}\Vert _{2}^{2}+{\frac{\rho _{l}}{2}\Vert {\bf {m}-\bf {v}^{l}+\bf {u}_{l}}\Vert _{2}^{2}}\rbrace$|⁠;
(2) Denoising steps:
 (a) |$\bf {v}_{1}=\mbox{TV}(\bf {m}_{l+1}-\bf {u}_{l},\sqrt{\frac{\alpha }{\rho _{l}}})$|⁠;
 (b) |$\bf {v}_{2}=\mbox{BM3D}(\bf {v}_{1}-\bf {u}_{l},\sqrt{\frac{\beta }{\rho _{l}}})$|⁠;
 (c) |$\bf {v}_{3}=\mbox{FFDNet}(\bf {v}_{2}-\bf {u}_{l},\sqrt{\frac{\gamma }{\rho _{l}}})$|⁠.
(3) Update step:
 Let |$\bf {v}^{l+1}=\bf {v}_{3}$|⁠,
|$\rho _{l+1}=(l+1)(1+\epsilon )^{l+1}$|⁠,
|$\bf {u}_{l+1}=\bf {u}_{l}+\rho _{l+1}(\bf {m}_{l+1}-\bf {v}^{l+1})$|⁠;
Output: The inversion result is |${\bf {v}}^{L}$|⁠.
Algorithm 2

PPR–FWI method

Initialize:
Given initial guess |$\bf {m}_{0}$|⁠, the observed data |$\bf {d}$|⁠, the maximum
number of iterations L, |$\bf {v}^{0}=\bf {u}_{0}=\rho _{0}=0$|⁠,
parameters |$\alpha$|⁠, |$\beta$|⁠, |$\gamma$|⁠, and |$\epsilon$|⁠.
Iterate: for |$l=0,1, \cdots ,L-1$|
(1) L-BFGS step:
|$\bf {m}_{l+1}=\underset{\bf {m}}{\arg \min }\lbrace {\frac{1}{2}}\Vert {\bf {P}}A_{\omega }(\bf {m})^{-1}\bf {Q}-\bf {d}\Vert _{2}^{2}+{\frac{\rho _{l}}{2}\Vert {\bf {m}-\bf {v}^{l}+\bf {u}_{l}}\Vert _{2}^{2}}\rbrace$|⁠;
(2) Denoising steps:
 (a) |$\bf {v}_{1}=\mbox{TV}(\bf {m}_{l+1}-\bf {u}_{l},\sqrt{\frac{\alpha }{\rho _{l}}})$|⁠;
 (b) |$\bf {v}_{2}=\mbox{BM3D}(\bf {v}_{1}-\bf {u}_{l},\sqrt{\frac{\beta }{\rho _{l}}})$|⁠;
 (c) |$\bf {v}_{3}=\mbox{FFDNet}(\bf {v}_{2}-\bf {u}_{l},\sqrt{\frac{\gamma }{\rho _{l}}})$|⁠.
(3) Update step:
 Let |$\bf {v}^{l+1}=\bf {v}_{3}$|⁠,
|$\rho _{l+1}=(l+1)(1+\epsilon )^{l+1}$|⁠,
|$\bf {u}_{l+1}=\bf {u}_{l}+\rho _{l+1}(\bf {m}_{l+1}-\bf {v}^{l+1})$|⁠;
Output: The inversion result is |${\bf {v}}^{L}$|⁠.
Initialize:
Given initial guess |$\bf {m}_{0}$|⁠, the observed data |$\bf {d}$|⁠, the maximum
number of iterations L, |$\bf {v}^{0}=\bf {u}_{0}=\rho _{0}=0$|⁠,
parameters |$\alpha$|⁠, |$\beta$|⁠, |$\gamma$|⁠, and |$\epsilon$|⁠.
Iterate: for |$l=0,1, \cdots ,L-1$|
(1) L-BFGS step:
|$\bf {m}_{l+1}=\underset{\bf {m}}{\arg \min }\lbrace {\frac{1}{2}}\Vert {\bf {P}}A_{\omega }(\bf {m})^{-1}\bf {Q}-\bf {d}\Vert _{2}^{2}+{\frac{\rho _{l}}{2}\Vert {\bf {m}-\bf {v}^{l}+\bf {u}_{l}}\Vert _{2}^{2}}\rbrace$|⁠;
(2) Denoising steps:
 (a) |$\bf {v}_{1}=\mbox{TV}(\bf {m}_{l+1}-\bf {u}_{l},\sqrt{\frac{\alpha }{\rho _{l}}})$|⁠;
 (b) |$\bf {v}_{2}=\mbox{BM3D}(\bf {v}_{1}-\bf {u}_{l},\sqrt{\frac{\beta }{\rho _{l}}})$|⁠;
 (c) |$\bf {v}_{3}=\mbox{FFDNet}(\bf {v}_{2}-\bf {u}_{l},\sqrt{\frac{\gamma }{\rho _{l}}})$|⁠.
(3) Update step:
 Let |$\bf {v}^{l+1}=\bf {v}_{3}$|⁠,
|$\rho _{l+1}=(l+1)(1+\epsilon )^{l+1}$|⁠,
|$\bf {u}_{l+1}=\bf {u}_{l}+\rho _{l+1}(\bf {m}_{l+1}-\bf {v}^{l+1})$|⁠;
Output: The inversion result is |${\bf {v}}^{L}$|⁠.
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close