The results of different approaches for using the motif features on independent test set
Method . | ROC1 . | ROC50 . |
---|---|---|
PreHom-PCLM | 0.9857 | 0.9937 |
1D CNNa | 0.9712 | 0.9890 |
AvgPoola | 0.9453 | 0.9770 |
MaxPoola | 0.9372 | 0.9722 |
Method . | ROC1 . | ROC50 . |
---|---|---|
PreHom-PCLM | 0.9857 | 0.9937 |
1D CNNa | 0.9712 | 0.9890 |
AvgPoola | 0.9453 | 0.9770 |
MaxPoola | 0.9372 | 0.9722 |
aLinearly concatenate the motif features.
The results of different approaches for using the motif features on independent test set
Method . | ROC1 . | ROC50 . |
---|---|---|
PreHom-PCLM | 0.9857 | 0.9937 |
1D CNNa | 0.9712 | 0.9890 |
AvgPoola | 0.9453 | 0.9770 |
MaxPoola | 0.9372 | 0.9722 |
Method . | ROC1 . | ROC50 . |
---|---|---|
PreHom-PCLM | 0.9857 | 0.9937 |
1D CNNa | 0.9712 | 0.9890 |
AvgPoola | 0.9453 | 0.9770 |
MaxPoola | 0.9372 | 0.9722 |
aLinearly concatenate the motif features.
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.