The C0 odd parity nd Rydberg states with total J = 3. The calculated energies ECalc are relative to the ground state in Rydbergs. ΔE is the energy difference between calculation and experiment in cm−1. λ is the wavelength of the transition from this state to the 2s2 2p2 3P2 state and A is the corresponding transition probability from the present work (PW) and from the compilation of Haris & Kramida (2017) (HK7).
Level . | ECalc . | ΔE . | λ (Å) . | A (s−1) . | A (s−1) . |
---|---|---|---|---|---|
. | . | . | . | PW . | HK . |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 10d [5/2] | 0.8175273 | 1.9 | 1115.23 | 2.00(+6) | 3.3(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 10d [5/2] | 0.8180900 | 1.8 | 1114.46 | 4.93(+6) | 9.0(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 10d [7/2] | 0.8181491 | 2.4 | 1114.38 | 2.28(+6) | 1.9(+6) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 11d [5/2] | 0.8192858 | 1.2 | 1112.82 | 1.53(+6) | 2.6(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 11d [5/2] | 0.8198505 | −2.1 | 1112.01 | 3.54(+6) | 7.0(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 11d [7/2] | 0.8198949 | 1.7 | 1112.00 | 1.87(+6) | 1.7(+6) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 12d [5/2] | 0.8206217 | 1.3 | 1111.01 | 1.19(+6) | 2.2(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 12d [5/2] | 0.8211880 | 1.0 | 1110.24 | 2.60(+6) | 6.0(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 12d [7/2] | 0.8212222 | 1.2 | 1110.20 | 1.58(+6) | 1.6(+6) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 13d [5/2] | 0.8216603 | 1.2 | 1109.61 | 9.40(+5) | 3.6(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 13d [5/2] | 0.8222279 | 0.4 | 1108.83 | 1.91(+6) | 9.0(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 13d [7/2] | 0.8222545 | 1.2 | 1108.80 | 1.39(+6) | 2.9(+6) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 14d [5/2] | 0.8224840 | 0.6 | 1108.49 | 7.47(+5) | 1.3(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 14d [5/2] | 0.8230517 | 1.5 | 1107.73 | 1.23(+6) | 2.3(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 14d [7/2] | 0.8230725 | 1.1 | 1107.70 | 1.47(+6) | 3.3(+6) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 15d [5/2] | 0.8231495 | 0.5 | 1107.59 | 5.45(+5) | 2.6(+5) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 16d [5/2] | 0.8236838 | −0.1 | 1106.86 | 3.20(+5) | |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 15d [5/2] | 0.8237200 | −1.0 | 1106.80 | 2.00(+6) | 3.0(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 15d [7/2] | 0.8237382 | 0.9 | 1106.80 | 3.32(+5) | |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 17d [5/2] | 0.8241373 | 0.3 | 1106.26 | 4.12(+5) | 7.0(+5) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 16d [5/2] | 0.8242619 | −0.7 | 1106.08 | 1.21(+6) | |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 16d [7/2] | 0.8242765 | 0.7 | 1106.08 | 5.77(+5) | 2.2(+6) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 18d [5/2] | 0.8245146 | 0.4 | 1105.75 | 3.56(+5) | |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 17d [5/2] | 0.8247118 | −1.3 | 1105.47 | 8.87(+5) | 1.7(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 17d [7/2] | 0.8247239 | 0.3 | 1105.47 | 5.94(+5) | |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 19d [5/2] | 0.8248338 | 0.9 | 1105.33 | 3.01(+5) | |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 18d [5/2] | 0.8250875 | −0.3 | 1104.98 | 3.05(+5) | 1.7(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 18d [7/2] | 0.8250963 | −0.1 | 1104.97 | 1.12(+6) | |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 20d [5/2] | 0.8251099 | −0.2 | 1104.95 | 7.64(+4) | |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 21d [5/2] | 0.8253385 | 0.1 | 1104.64 | 2.18(+5) | |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 19d [5/2] | 0.8254084 | 3.4 | 1104.59 | 7.15(+5) | 1.3(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 19d [7/2] | 0.8254171 | 0.4 | 1104.54 | 3.52(+5) | 2.3(+5) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 22d [5/2] | 0.8255417 | 0.3 | 1104.37 | 1.96(+5) | |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 20d [5/2] | 0.8256803 | 2.9 | 1104.22 | 4.81(+5) | 1.1(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 20d [7/2] | 0.8256875 | −0.8 | 1104.17 | 4.41(+5) | 2.6(+5) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 23d [5/2] | 0.8257193 | 1104.13 | 1.59(+5) | ||
2s2 2p (2P|$_{1/2}^{\rm o}$|) 24d [5/2] | 0.8258731 | 1103.93 | 1.44(+5) | ||
2s2 2p (2P|$_{3/2}^{\rm o}$|) 21d [5/2] | 0.8259149 | 1103.87 | 5.40(+5) | ||
2s2 2p (2P|$_{3/2}^{\rm o}$|) 21d [7/2] | 0.8259214 | −0.1 | 1103.86 | 2.52(+5) | 2.5(+5) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 25d [5/2] | 0.8260104 | 1103.74 | 1.33(+5) | ||
2s2 2p (2P|$_{3/2}^{\rm o}$|) 22d [5/2] | 0.8261173 | 1103.60 | 2.84(+5) | ||
2s2 2p (2P|$_{3/2}^{\rm o}$|) 22d [7/2] | 0.8261225 | 0.5 | 1103.60 | 4.42(+5) | |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 26d [5/2] | 0.8261330 | 1103.58 | 7.65(+4) | ||
2s2 2p (2P|$_{1/2}^{\rm o}$|) 27d [5/2] | 0.8262396 | 1103.44 | 1.05(+5) | ||
2s2 2p (2P|$_{3/2}^{\rm o}$|) 23d [5/2] | 0.8262947 | 1103.36 | 3.66(+5) | ||
2s2 2p (2P|$_{3/2}^{\rm o}$|) 23d [7/2] | 0.8262996 | 0.1 | 1103.36 | 2.35(+5) | |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 28d [5/2] | 0.8263367 | 1103.31 | 9.38(+4) | ||
2s2 2p (2P|$_{1/2}^{\rm o}$|) 29d [5/2] | 0.8264230 | 1103.19 | 8.15(+4) | ||
2s2 2p (2P|$_{3/2}^{\rm o}$|) 24d [5/2] | 0.8264501 | 1103.16 | 3.54(+5) | ||
2s2 2p (2P|$_{3/2}^{\rm o}$|) 24d [7/2] | 0.8264545 | 0.4 | 1103.16 | 1.77(+5) | |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 30d [5/2] | 0.8265017 | 1103.09 | 7.72(+4) |
Level . | ECalc . | ΔE . | λ (Å) . | A (s−1) . | A (s−1) . |
---|---|---|---|---|---|
. | . | . | . | PW . | HK . |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 10d [5/2] | 0.8175273 | 1.9 | 1115.23 | 2.00(+6) | 3.3(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 10d [5/2] | 0.8180900 | 1.8 | 1114.46 | 4.93(+6) | 9.0(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 10d [7/2] | 0.8181491 | 2.4 | 1114.38 | 2.28(+6) | 1.9(+6) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 11d [5/2] | 0.8192858 | 1.2 | 1112.82 | 1.53(+6) | 2.6(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 11d [5/2] | 0.8198505 | −2.1 | 1112.01 | 3.54(+6) | 7.0(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 11d [7/2] | 0.8198949 | 1.7 | 1112.00 | 1.87(+6) | 1.7(+6) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 12d [5/2] | 0.8206217 | 1.3 | 1111.01 | 1.19(+6) | 2.2(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 12d [5/2] | 0.8211880 | 1.0 | 1110.24 | 2.60(+6) | 6.0(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 12d [7/2] | 0.8212222 | 1.2 | 1110.20 | 1.58(+6) | 1.6(+6) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 13d [5/2] | 0.8216603 | 1.2 | 1109.61 | 9.40(+5) | 3.6(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 13d [5/2] | 0.8222279 | 0.4 | 1108.83 | 1.91(+6) | 9.0(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 13d [7/2] | 0.8222545 | 1.2 | 1108.80 | 1.39(+6) | 2.9(+6) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 14d [5/2] | 0.8224840 | 0.6 | 1108.49 | 7.47(+5) | 1.3(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 14d [5/2] | 0.8230517 | 1.5 | 1107.73 | 1.23(+6) | 2.3(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 14d [7/2] | 0.8230725 | 1.1 | 1107.70 | 1.47(+6) | 3.3(+6) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 15d [5/2] | 0.8231495 | 0.5 | 1107.59 | 5.45(+5) | 2.6(+5) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 16d [5/2] | 0.8236838 | −0.1 | 1106.86 | 3.20(+5) | |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 15d [5/2] | 0.8237200 | −1.0 | 1106.80 | 2.00(+6) | 3.0(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 15d [7/2] | 0.8237382 | 0.9 | 1106.80 | 3.32(+5) | |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 17d [5/2] | 0.8241373 | 0.3 | 1106.26 | 4.12(+5) | 7.0(+5) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 16d [5/2] | 0.8242619 | −0.7 | 1106.08 | 1.21(+6) | |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 16d [7/2] | 0.8242765 | 0.7 | 1106.08 | 5.77(+5) | 2.2(+6) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 18d [5/2] | 0.8245146 | 0.4 | 1105.75 | 3.56(+5) | |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 17d [5/2] | 0.8247118 | −1.3 | 1105.47 | 8.87(+5) | 1.7(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 17d [7/2] | 0.8247239 | 0.3 | 1105.47 | 5.94(+5) | |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 19d [5/2] | 0.8248338 | 0.9 | 1105.33 | 3.01(+5) | |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 18d [5/2] | 0.8250875 | −0.3 | 1104.98 | 3.05(+5) | 1.7(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 18d [7/2] | 0.8250963 | −0.1 | 1104.97 | 1.12(+6) | |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 20d [5/2] | 0.8251099 | −0.2 | 1104.95 | 7.64(+4) | |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 21d [5/2] | 0.8253385 | 0.1 | 1104.64 | 2.18(+5) | |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 19d [5/2] | 0.8254084 | 3.4 | 1104.59 | 7.15(+5) | 1.3(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 19d [7/2] | 0.8254171 | 0.4 | 1104.54 | 3.52(+5) | 2.3(+5) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 22d [5/2] | 0.8255417 | 0.3 | 1104.37 | 1.96(+5) | |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 20d [5/2] | 0.8256803 | 2.9 | 1104.22 | 4.81(+5) | 1.1(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 20d [7/2] | 0.8256875 | −0.8 | 1104.17 | 4.41(+5) | 2.6(+5) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 23d [5/2] | 0.8257193 | 1104.13 | 1.59(+5) | ||
2s2 2p (2P|$_{1/2}^{\rm o}$|) 24d [5/2] | 0.8258731 | 1103.93 | 1.44(+5) | ||
2s2 2p (2P|$_{3/2}^{\rm o}$|) 21d [5/2] | 0.8259149 | 1103.87 | 5.40(+5) | ||
2s2 2p (2P|$_{3/2}^{\rm o}$|) 21d [7/2] | 0.8259214 | −0.1 | 1103.86 | 2.52(+5) | 2.5(+5) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 25d [5/2] | 0.8260104 | 1103.74 | 1.33(+5) | ||
2s2 2p (2P|$_{3/2}^{\rm o}$|) 22d [5/2] | 0.8261173 | 1103.60 | 2.84(+5) | ||
2s2 2p (2P|$_{3/2}^{\rm o}$|) 22d [7/2] | 0.8261225 | 0.5 | 1103.60 | 4.42(+5) | |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 26d [5/2] | 0.8261330 | 1103.58 | 7.65(+4) | ||
2s2 2p (2P|$_{1/2}^{\rm o}$|) 27d [5/2] | 0.8262396 | 1103.44 | 1.05(+5) | ||
2s2 2p (2P|$_{3/2}^{\rm o}$|) 23d [5/2] | 0.8262947 | 1103.36 | 3.66(+5) | ||
2s2 2p (2P|$_{3/2}^{\rm o}$|) 23d [7/2] | 0.8262996 | 0.1 | 1103.36 | 2.35(+5) | |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 28d [5/2] | 0.8263367 | 1103.31 | 9.38(+4) | ||
2s2 2p (2P|$_{1/2}^{\rm o}$|) 29d [5/2] | 0.8264230 | 1103.19 | 8.15(+4) | ||
2s2 2p (2P|$_{3/2}^{\rm o}$|) 24d [5/2] | 0.8264501 | 1103.16 | 3.54(+5) | ||
2s2 2p (2P|$_{3/2}^{\rm o}$|) 24d [7/2] | 0.8264545 | 0.4 | 1103.16 | 1.77(+5) | |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 30d [5/2] | 0.8265017 | 1103.09 | 7.72(+4) |
The C0 odd parity nd Rydberg states with total J = 3. The calculated energies ECalc are relative to the ground state in Rydbergs. ΔE is the energy difference between calculation and experiment in cm−1. λ is the wavelength of the transition from this state to the 2s2 2p2 3P2 state and A is the corresponding transition probability from the present work (PW) and from the compilation of Haris & Kramida (2017) (HK7).
Level . | ECalc . | ΔE . | λ (Å) . | A (s−1) . | A (s−1) . |
---|---|---|---|---|---|
. | . | . | . | PW . | HK . |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 10d [5/2] | 0.8175273 | 1.9 | 1115.23 | 2.00(+6) | 3.3(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 10d [5/2] | 0.8180900 | 1.8 | 1114.46 | 4.93(+6) | 9.0(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 10d [7/2] | 0.8181491 | 2.4 | 1114.38 | 2.28(+6) | 1.9(+6) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 11d [5/2] | 0.8192858 | 1.2 | 1112.82 | 1.53(+6) | 2.6(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 11d [5/2] | 0.8198505 | −2.1 | 1112.01 | 3.54(+6) | 7.0(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 11d [7/2] | 0.8198949 | 1.7 | 1112.00 | 1.87(+6) | 1.7(+6) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 12d [5/2] | 0.8206217 | 1.3 | 1111.01 | 1.19(+6) | 2.2(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 12d [5/2] | 0.8211880 | 1.0 | 1110.24 | 2.60(+6) | 6.0(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 12d [7/2] | 0.8212222 | 1.2 | 1110.20 | 1.58(+6) | 1.6(+6) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 13d [5/2] | 0.8216603 | 1.2 | 1109.61 | 9.40(+5) | 3.6(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 13d [5/2] | 0.8222279 | 0.4 | 1108.83 | 1.91(+6) | 9.0(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 13d [7/2] | 0.8222545 | 1.2 | 1108.80 | 1.39(+6) | 2.9(+6) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 14d [5/2] | 0.8224840 | 0.6 | 1108.49 | 7.47(+5) | 1.3(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 14d [5/2] | 0.8230517 | 1.5 | 1107.73 | 1.23(+6) | 2.3(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 14d [7/2] | 0.8230725 | 1.1 | 1107.70 | 1.47(+6) | 3.3(+6) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 15d [5/2] | 0.8231495 | 0.5 | 1107.59 | 5.45(+5) | 2.6(+5) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 16d [5/2] | 0.8236838 | −0.1 | 1106.86 | 3.20(+5) | |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 15d [5/2] | 0.8237200 | −1.0 | 1106.80 | 2.00(+6) | 3.0(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 15d [7/2] | 0.8237382 | 0.9 | 1106.80 | 3.32(+5) | |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 17d [5/2] | 0.8241373 | 0.3 | 1106.26 | 4.12(+5) | 7.0(+5) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 16d [5/2] | 0.8242619 | −0.7 | 1106.08 | 1.21(+6) | |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 16d [7/2] | 0.8242765 | 0.7 | 1106.08 | 5.77(+5) | 2.2(+6) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 18d [5/2] | 0.8245146 | 0.4 | 1105.75 | 3.56(+5) | |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 17d [5/2] | 0.8247118 | −1.3 | 1105.47 | 8.87(+5) | 1.7(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 17d [7/2] | 0.8247239 | 0.3 | 1105.47 | 5.94(+5) | |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 19d [5/2] | 0.8248338 | 0.9 | 1105.33 | 3.01(+5) | |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 18d [5/2] | 0.8250875 | −0.3 | 1104.98 | 3.05(+5) | 1.7(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 18d [7/2] | 0.8250963 | −0.1 | 1104.97 | 1.12(+6) | |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 20d [5/2] | 0.8251099 | −0.2 | 1104.95 | 7.64(+4) | |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 21d [5/2] | 0.8253385 | 0.1 | 1104.64 | 2.18(+5) | |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 19d [5/2] | 0.8254084 | 3.4 | 1104.59 | 7.15(+5) | 1.3(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 19d [7/2] | 0.8254171 | 0.4 | 1104.54 | 3.52(+5) | 2.3(+5) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 22d [5/2] | 0.8255417 | 0.3 | 1104.37 | 1.96(+5) | |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 20d [5/2] | 0.8256803 | 2.9 | 1104.22 | 4.81(+5) | 1.1(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 20d [7/2] | 0.8256875 | −0.8 | 1104.17 | 4.41(+5) | 2.6(+5) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 23d [5/2] | 0.8257193 | 1104.13 | 1.59(+5) | ||
2s2 2p (2P|$_{1/2}^{\rm o}$|) 24d [5/2] | 0.8258731 | 1103.93 | 1.44(+5) | ||
2s2 2p (2P|$_{3/2}^{\rm o}$|) 21d [5/2] | 0.8259149 | 1103.87 | 5.40(+5) | ||
2s2 2p (2P|$_{3/2}^{\rm o}$|) 21d [7/2] | 0.8259214 | −0.1 | 1103.86 | 2.52(+5) | 2.5(+5) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 25d [5/2] | 0.8260104 | 1103.74 | 1.33(+5) | ||
2s2 2p (2P|$_{3/2}^{\rm o}$|) 22d [5/2] | 0.8261173 | 1103.60 | 2.84(+5) | ||
2s2 2p (2P|$_{3/2}^{\rm o}$|) 22d [7/2] | 0.8261225 | 0.5 | 1103.60 | 4.42(+5) | |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 26d [5/2] | 0.8261330 | 1103.58 | 7.65(+4) | ||
2s2 2p (2P|$_{1/2}^{\rm o}$|) 27d [5/2] | 0.8262396 | 1103.44 | 1.05(+5) | ||
2s2 2p (2P|$_{3/2}^{\rm o}$|) 23d [5/2] | 0.8262947 | 1103.36 | 3.66(+5) | ||
2s2 2p (2P|$_{3/2}^{\rm o}$|) 23d [7/2] | 0.8262996 | 0.1 | 1103.36 | 2.35(+5) | |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 28d [5/2] | 0.8263367 | 1103.31 | 9.38(+4) | ||
2s2 2p (2P|$_{1/2}^{\rm o}$|) 29d [5/2] | 0.8264230 | 1103.19 | 8.15(+4) | ||
2s2 2p (2P|$_{3/2}^{\rm o}$|) 24d [5/2] | 0.8264501 | 1103.16 | 3.54(+5) | ||
2s2 2p (2P|$_{3/2}^{\rm o}$|) 24d [7/2] | 0.8264545 | 0.4 | 1103.16 | 1.77(+5) | |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 30d [5/2] | 0.8265017 | 1103.09 | 7.72(+4) |
Level . | ECalc . | ΔE . | λ (Å) . | A (s−1) . | A (s−1) . |
---|---|---|---|---|---|
. | . | . | . | PW . | HK . |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 10d [5/2] | 0.8175273 | 1.9 | 1115.23 | 2.00(+6) | 3.3(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 10d [5/2] | 0.8180900 | 1.8 | 1114.46 | 4.93(+6) | 9.0(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 10d [7/2] | 0.8181491 | 2.4 | 1114.38 | 2.28(+6) | 1.9(+6) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 11d [5/2] | 0.8192858 | 1.2 | 1112.82 | 1.53(+6) | 2.6(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 11d [5/2] | 0.8198505 | −2.1 | 1112.01 | 3.54(+6) | 7.0(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 11d [7/2] | 0.8198949 | 1.7 | 1112.00 | 1.87(+6) | 1.7(+6) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 12d [5/2] | 0.8206217 | 1.3 | 1111.01 | 1.19(+6) | 2.2(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 12d [5/2] | 0.8211880 | 1.0 | 1110.24 | 2.60(+6) | 6.0(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 12d [7/2] | 0.8212222 | 1.2 | 1110.20 | 1.58(+6) | 1.6(+6) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 13d [5/2] | 0.8216603 | 1.2 | 1109.61 | 9.40(+5) | 3.6(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 13d [5/2] | 0.8222279 | 0.4 | 1108.83 | 1.91(+6) | 9.0(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 13d [7/2] | 0.8222545 | 1.2 | 1108.80 | 1.39(+6) | 2.9(+6) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 14d [5/2] | 0.8224840 | 0.6 | 1108.49 | 7.47(+5) | 1.3(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 14d [5/2] | 0.8230517 | 1.5 | 1107.73 | 1.23(+6) | 2.3(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 14d [7/2] | 0.8230725 | 1.1 | 1107.70 | 1.47(+6) | 3.3(+6) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 15d [5/2] | 0.8231495 | 0.5 | 1107.59 | 5.45(+5) | 2.6(+5) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 16d [5/2] | 0.8236838 | −0.1 | 1106.86 | 3.20(+5) | |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 15d [5/2] | 0.8237200 | −1.0 | 1106.80 | 2.00(+6) | 3.0(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 15d [7/2] | 0.8237382 | 0.9 | 1106.80 | 3.32(+5) | |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 17d [5/2] | 0.8241373 | 0.3 | 1106.26 | 4.12(+5) | 7.0(+5) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 16d [5/2] | 0.8242619 | −0.7 | 1106.08 | 1.21(+6) | |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 16d [7/2] | 0.8242765 | 0.7 | 1106.08 | 5.77(+5) | 2.2(+6) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 18d [5/2] | 0.8245146 | 0.4 | 1105.75 | 3.56(+5) | |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 17d [5/2] | 0.8247118 | −1.3 | 1105.47 | 8.87(+5) | 1.7(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 17d [7/2] | 0.8247239 | 0.3 | 1105.47 | 5.94(+5) | |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 19d [5/2] | 0.8248338 | 0.9 | 1105.33 | 3.01(+5) | |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 18d [5/2] | 0.8250875 | −0.3 | 1104.98 | 3.05(+5) | 1.7(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 18d [7/2] | 0.8250963 | −0.1 | 1104.97 | 1.12(+6) | |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 20d [5/2] | 0.8251099 | −0.2 | 1104.95 | 7.64(+4) | |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 21d [5/2] | 0.8253385 | 0.1 | 1104.64 | 2.18(+5) | |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 19d [5/2] | 0.8254084 | 3.4 | 1104.59 | 7.15(+5) | 1.3(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 19d [7/2] | 0.8254171 | 0.4 | 1104.54 | 3.52(+5) | 2.3(+5) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 22d [5/2] | 0.8255417 | 0.3 | 1104.37 | 1.96(+5) | |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 20d [5/2] | 0.8256803 | 2.9 | 1104.22 | 4.81(+5) | 1.1(+6) |
2s2 2p (2P|$_{3/2}^{\rm o}$|) 20d [7/2] | 0.8256875 | −0.8 | 1104.17 | 4.41(+5) | 2.6(+5) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 23d [5/2] | 0.8257193 | 1104.13 | 1.59(+5) | ||
2s2 2p (2P|$_{1/2}^{\rm o}$|) 24d [5/2] | 0.8258731 | 1103.93 | 1.44(+5) | ||
2s2 2p (2P|$_{3/2}^{\rm o}$|) 21d [5/2] | 0.8259149 | 1103.87 | 5.40(+5) | ||
2s2 2p (2P|$_{3/2}^{\rm o}$|) 21d [7/2] | 0.8259214 | −0.1 | 1103.86 | 2.52(+5) | 2.5(+5) |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 25d [5/2] | 0.8260104 | 1103.74 | 1.33(+5) | ||
2s2 2p (2P|$_{3/2}^{\rm o}$|) 22d [5/2] | 0.8261173 | 1103.60 | 2.84(+5) | ||
2s2 2p (2P|$_{3/2}^{\rm o}$|) 22d [7/2] | 0.8261225 | 0.5 | 1103.60 | 4.42(+5) | |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 26d [5/2] | 0.8261330 | 1103.58 | 7.65(+4) | ||
2s2 2p (2P|$_{1/2}^{\rm o}$|) 27d [5/2] | 0.8262396 | 1103.44 | 1.05(+5) | ||
2s2 2p (2P|$_{3/2}^{\rm o}$|) 23d [5/2] | 0.8262947 | 1103.36 | 3.66(+5) | ||
2s2 2p (2P|$_{3/2}^{\rm o}$|) 23d [7/2] | 0.8262996 | 0.1 | 1103.36 | 2.35(+5) | |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 28d [5/2] | 0.8263367 | 1103.31 | 9.38(+4) | ||
2s2 2p (2P|$_{1/2}^{\rm o}$|) 29d [5/2] | 0.8264230 | 1103.19 | 8.15(+4) | ||
2s2 2p (2P|$_{3/2}^{\rm o}$|) 24d [5/2] | 0.8264501 | 1103.16 | 3.54(+5) | ||
2s2 2p (2P|$_{3/2}^{\rm o}$|) 24d [7/2] | 0.8264545 | 0.4 | 1103.16 | 1.77(+5) | |
2s2 2p (2P|$_{1/2}^{\rm o}$|) 30d [5/2] | 0.8265017 | 1103.09 | 7.72(+4) |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.