Boundaries of the uniform priors on the model parameters. The lower bound on |${\mathcal {R}}_l$| is chosen to be smaller than the rigidity at which the diffusion time-scale becomes smaller than the advection and energy loss time-scales.
α . | |$\kappa _{\mathrm{halo}}\, [\mathrm{pc^2\,yr^{-1}}]$| . | |$H\, [\mathrm{kpc}]$| . | |$v_c\, [\mathrm{km\,s^{-1}}]$| . | δ . | δl . | |${\mathcal {R}}_l\, [\mathrm{GV}]$| . |
---|---|---|---|---|---|---|
[0, 1] | [0.001, 1] | [0.1, 20] | [0.01, 100] | [0, 2] | [−4, 4] | [2.2, 20] |
α . | |$\kappa _{\mathrm{halo}}\, [\mathrm{pc^2\,yr^{-1}}]$| . | |$H\, [\mathrm{kpc}]$| . | |$v_c\, [\mathrm{km\,s^{-1}}]$| . | δ . | δl . | |${\mathcal {R}}_l\, [\mathrm{GV}]$| . |
---|---|---|---|---|---|---|
[0, 1] | [0.001, 1] | [0.1, 20] | [0.01, 100] | [0, 2] | [−4, 4] | [2.2, 20] |
Boundaries of the uniform priors on the model parameters. The lower bound on |${\mathcal {R}}_l$| is chosen to be smaller than the rigidity at which the diffusion time-scale becomes smaller than the advection and energy loss time-scales.
α . | |$\kappa _{\mathrm{halo}}\, [\mathrm{pc^2\,yr^{-1}}]$| . | |$H\, [\mathrm{kpc}]$| . | |$v_c\, [\mathrm{km\,s^{-1}}]$| . | δ . | δl . | |${\mathcal {R}}_l\, [\mathrm{GV}]$| . |
---|---|---|---|---|---|---|
[0, 1] | [0.001, 1] | [0.1, 20] | [0.01, 100] | [0, 2] | [−4, 4] | [2.2, 20] |
α . | |$\kappa _{\mathrm{halo}}\, [\mathrm{pc^2\,yr^{-1}}]$| . | |$H\, [\mathrm{kpc}]$| . | |$v_c\, [\mathrm{km\,s^{-1}}]$| . | δ . | δl . | |${\mathcal {R}}_l\, [\mathrm{GV}]$| . |
---|---|---|---|---|---|---|
[0, 1] | [0.001, 1] | [0.1, 20] | [0.01, 100] | [0, 2] | [−4, 4] | [2.2, 20] |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.