Table 2.

Biotechnological significance of various Acinetobacter species.

Biotechnological applicationOrganismsDegradation/production potentialReferences
Phenol degradationA. calcoaceticus91.6% of 0.8 g/l phenol in 48 hIrankhah et al. (2019)
A. radioresistens99% of 450 mg/kg of phenol-contaminated soilLiu et al. (2020)
A. lwoffii41.67 mg/l per hourIrankhah et al. (2019)
A. tandoii100% degradation at the concentration of 280 mg/lVan et al. (2019)
Nitrogen assimilation and removalA. boisseriNot mentionedAlvarez-Perez et al. ()
A. calcoaceticusCapable of nitrogen removal under low temperature conditionsWu et al. (2022)
A. nectarisNot mentionedAlvarez-Perez et al. ()
Chromium reductionA. bouvetiiAble to reduce 40% chromium absorbed by plant rootsQadir et al. (2021)
Bioremediation of heavy metalsA. imdicusCan reduce chromium(IV) and mercury(II)Hu et al. (2021)
Hydrocarbon degradationA. lwoffiiCan degrade C13- C35 n-alkanes in crude oilLiu et al. (2020)
A. pittiCan degrade 88% of crude oilChettri et al. (2019)
A. baumanniiCan degrade 76% diesel and 90% paraffinsKumar and De (2023)
Dye discoloration and degradationA. pittiiCan degrade 84% methylene blue in 24 hOgunlaja et al. (2020)
A. calcoaceticusAzo dye amaranth degradation with 90% efficiencyAmeenudeen et al. (2021)
A. haemolyticusCan degrade methylene green, basic violet, and acid blue dyesHossain et al. (2022)
A. baumanniiDecolourized 90% of 500 mg/l of azo dyeShreedharan et al. (2021)
TouleneA. junniiCan degrade 80% of 50 ppm toluene within 72 hSingh et al. (2018)
Diesel degradationA. vivaniCan use diesel as the sole source of carbonZhang et al. (2022)
A. haemolyticusDiesel degradation facilitated by kurstakin moleculesDiallo et al. (2021)
A. baumanniiCan degrade 99% diesel at pH 7Imron et al. (2018)
A. lwoffiiBioremediation in marine environmentImron et al. (2020)
A. calcoaceticusPresence of diesel degrading genes alkM and xcpRHo et al. (2020)
Polyurethane degradationA. baumanniiGrows on polyurethaneEspinosa et al. (2020)
Crude oil degradationA. venetianusCan degrade upto 60.6% waxy crude oilLiu et al. (2021), Wang et al. (2019)
A. pittiCan degrade 36% percent crude oil in 21 days at 10 g/lWang et al. (2019)
Insecticide degradationA. schindleriCan degrade insecticides α-endosulfan and α-cypermethrin with more than 60% efficiencyGur and Algur (2022)
Furfural degradationA. baylyiCan degrade 1 g furfural in 1 hArteaga et al. (2021)
Fipronil degradationA. calcoaceticus86.6% degradation after 45 daysUniyal et al. (2016)
A. oleivorans89.7% degradation after 45 daysUniyal et al. (2016)
NAP, ANT, and other polyaromatic hydrocarbon degradationA. johnsoniiCan degrade 200 mg/l NAP and 1950 mg/l ANTJiang et al. (2018)
A. baumanniiEfficient at 300 mg/l concentration of pyreneGupta et al. (2020)
Catechol productionA. bouvetiProduces novel biscatechol siderophores namely propanochelin, butanochelin, and pentanochelinReitz and Butler (2020)
N-acetyl-β-D-glucosamine productionA. parvusCan convert chitin to N-acetyl-β-D-glucosamineKim et al. (2017)
Cellulase productionA. junniiCapable of producing cellulase at 112.38 U/mlBanerjee et al. (2020)
Mevalonate production
  • A. baylyi

Produces mevalonate from lignin derived compounds by β-keto adipose pathwayArvay et al. (2021)
Lipase productionA. indicusEfficient lipase producer from industrial wastePatel et al. (2021)
A. radioresistensCan produce 4.16 U/ml (at pH 9) of enzyme after 72 hGupta et al. (2018)
A. haemolyticusProduces lipase which is highly stable at 4°C displaying 90% activity even after 2 monthsSarac et al. (2016)
A. calcoaceticusA. calcoaceticus Rag-1 produces the most widely studied Emulsan (1000 kDa)Mujumdar et al. (2019)
Bioemulsion and biosurfactant productionA. pittiiCan produce 0.57 g/l lipopeptide biosurfactant when incubated with 1% (v/v) crude oilMujumdar et al. (2019)
A. beijerinckiiProduces the only bioemulsion that contains lipoprotein while others contain polysaccharidesMujumdar et al. (2019)
A. baumanniiProduces lipoglycan, using edible oil as carbon sourceMujumdar et al. (2019)
A. radioresistensProduces alsan, utilizing carbon source as ethanolMujumdar et al. (2019)
A. bouvetiiProduces the highest molecular weight lipo-hetero-polysaccharide bioemulsifierMujumdar et al. (2019)
A. lwoffiiProduces proteoglycan in presence of castor oil as carbon sourceMujumdar et al. (2019)
Phenanthrene degradationA. venetianusPhenanthrene degradation ability facilitated by ball-milled biochar (2.4 times increase)Guo et al. (2022)
Proteases productionA. pittiiYields as high as 11–12 U/ml with de-oiled neem seed cakeReddy et al. (2022)
Biohydrogen productionA. juniiCan produce up to 566 ml/l of H2 from wastewaters at pH 7.5Murugan et al. (2021)
Biodiesel degradationA. oleivoransUses biodiesel as a sole source of carbon at 30°CDeems et al. (2021)
Polyhydroxybutyrate (PHB) productionA. nosocomialisCan yield up to 5.88 g/l of PHB under optimal conditionsRanganadha et al. (2020)
Biotechnological applicationOrganismsDegradation/production potentialReferences
Phenol degradationA. calcoaceticus91.6% of 0.8 g/l phenol in 48 hIrankhah et al. (2019)
A. radioresistens99% of 450 mg/kg of phenol-contaminated soilLiu et al. (2020)
A. lwoffii41.67 mg/l per hourIrankhah et al. (2019)
A. tandoii100% degradation at the concentration of 280 mg/lVan et al. (2019)
Nitrogen assimilation and removalA. boisseriNot mentionedAlvarez-Perez et al. ()
A. calcoaceticusCapable of nitrogen removal under low temperature conditionsWu et al. (2022)
A. nectarisNot mentionedAlvarez-Perez et al. ()
Chromium reductionA. bouvetiiAble to reduce 40% chromium absorbed by plant rootsQadir et al. (2021)
Bioremediation of heavy metalsA. imdicusCan reduce chromium(IV) and mercury(II)Hu et al. (2021)
Hydrocarbon degradationA. lwoffiiCan degrade C13- C35 n-alkanes in crude oilLiu et al. (2020)
A. pittiCan degrade 88% of crude oilChettri et al. (2019)
A. baumanniiCan degrade 76% diesel and 90% paraffinsKumar and De (2023)
Dye discoloration and degradationA. pittiiCan degrade 84% methylene blue in 24 hOgunlaja et al. (2020)
A. calcoaceticusAzo dye amaranth degradation with 90% efficiencyAmeenudeen et al. (2021)
A. haemolyticusCan degrade methylene green, basic violet, and acid blue dyesHossain et al. (2022)
A. baumanniiDecolourized 90% of 500 mg/l of azo dyeShreedharan et al. (2021)
TouleneA. junniiCan degrade 80% of 50 ppm toluene within 72 hSingh et al. (2018)
Diesel degradationA. vivaniCan use diesel as the sole source of carbonZhang et al. (2022)
A. haemolyticusDiesel degradation facilitated by kurstakin moleculesDiallo et al. (2021)
A. baumanniiCan degrade 99% diesel at pH 7Imron et al. (2018)
A. lwoffiiBioremediation in marine environmentImron et al. (2020)
A. calcoaceticusPresence of diesel degrading genes alkM and xcpRHo et al. (2020)
Polyurethane degradationA. baumanniiGrows on polyurethaneEspinosa et al. (2020)
Crude oil degradationA. venetianusCan degrade upto 60.6% waxy crude oilLiu et al. (2021), Wang et al. (2019)
A. pittiCan degrade 36% percent crude oil in 21 days at 10 g/lWang et al. (2019)
Insecticide degradationA. schindleriCan degrade insecticides α-endosulfan and α-cypermethrin with more than 60% efficiencyGur and Algur (2022)
Furfural degradationA. baylyiCan degrade 1 g furfural in 1 hArteaga et al. (2021)
Fipronil degradationA. calcoaceticus86.6% degradation after 45 daysUniyal et al. (2016)
A. oleivorans89.7% degradation after 45 daysUniyal et al. (2016)
NAP, ANT, and other polyaromatic hydrocarbon degradationA. johnsoniiCan degrade 200 mg/l NAP and 1950 mg/l ANTJiang et al. (2018)
A. baumanniiEfficient at 300 mg/l concentration of pyreneGupta et al. (2020)
Catechol productionA. bouvetiProduces novel biscatechol siderophores namely propanochelin, butanochelin, and pentanochelinReitz and Butler (2020)
N-acetyl-β-D-glucosamine productionA. parvusCan convert chitin to N-acetyl-β-D-glucosamineKim et al. (2017)
Cellulase productionA. junniiCapable of producing cellulase at 112.38 U/mlBanerjee et al. (2020)
Mevalonate production
  • A. baylyi

Produces mevalonate from lignin derived compounds by β-keto adipose pathwayArvay et al. (2021)
Lipase productionA. indicusEfficient lipase producer from industrial wastePatel et al. (2021)
A. radioresistensCan produce 4.16 U/ml (at pH 9) of enzyme after 72 hGupta et al. (2018)
A. haemolyticusProduces lipase which is highly stable at 4°C displaying 90% activity even after 2 monthsSarac et al. (2016)
A. calcoaceticusA. calcoaceticus Rag-1 produces the most widely studied Emulsan (1000 kDa)Mujumdar et al. (2019)
Bioemulsion and biosurfactant productionA. pittiiCan produce 0.57 g/l lipopeptide biosurfactant when incubated with 1% (v/v) crude oilMujumdar et al. (2019)
A. beijerinckiiProduces the only bioemulsion that contains lipoprotein while others contain polysaccharidesMujumdar et al. (2019)
A. baumanniiProduces lipoglycan, using edible oil as carbon sourceMujumdar et al. (2019)
A. radioresistensProduces alsan, utilizing carbon source as ethanolMujumdar et al. (2019)
A. bouvetiiProduces the highest molecular weight lipo-hetero-polysaccharide bioemulsifierMujumdar et al. (2019)
A. lwoffiiProduces proteoglycan in presence of castor oil as carbon sourceMujumdar et al. (2019)
Phenanthrene degradationA. venetianusPhenanthrene degradation ability facilitated by ball-milled biochar (2.4 times increase)Guo et al. (2022)
Proteases productionA. pittiiYields as high as 11–12 U/ml with de-oiled neem seed cakeReddy et al. (2022)
Biohydrogen productionA. juniiCan produce up to 566 ml/l of H2 from wastewaters at pH 7.5Murugan et al. (2021)
Biodiesel degradationA. oleivoransUses biodiesel as a sole source of carbon at 30°CDeems et al. (2021)
Polyhydroxybutyrate (PHB) productionA. nosocomialisCan yield up to 5.88 g/l of PHB under optimal conditionsRanganadha et al. (2020)
Table 2.

Biotechnological significance of various Acinetobacter species.

Biotechnological applicationOrganismsDegradation/production potentialReferences
Phenol degradationA. calcoaceticus91.6% of 0.8 g/l phenol in 48 hIrankhah et al. (2019)
A. radioresistens99% of 450 mg/kg of phenol-contaminated soilLiu et al. (2020)
A. lwoffii41.67 mg/l per hourIrankhah et al. (2019)
A. tandoii100% degradation at the concentration of 280 mg/lVan et al. (2019)
Nitrogen assimilation and removalA. boisseriNot mentionedAlvarez-Perez et al. ()
A. calcoaceticusCapable of nitrogen removal under low temperature conditionsWu et al. (2022)
A. nectarisNot mentionedAlvarez-Perez et al. ()
Chromium reductionA. bouvetiiAble to reduce 40% chromium absorbed by plant rootsQadir et al. (2021)
Bioremediation of heavy metalsA. imdicusCan reduce chromium(IV) and mercury(II)Hu et al. (2021)
Hydrocarbon degradationA. lwoffiiCan degrade C13- C35 n-alkanes in crude oilLiu et al. (2020)
A. pittiCan degrade 88% of crude oilChettri et al. (2019)
A. baumanniiCan degrade 76% diesel and 90% paraffinsKumar and De (2023)
Dye discoloration and degradationA. pittiiCan degrade 84% methylene blue in 24 hOgunlaja et al. (2020)
A. calcoaceticusAzo dye amaranth degradation with 90% efficiencyAmeenudeen et al. (2021)
A. haemolyticusCan degrade methylene green, basic violet, and acid blue dyesHossain et al. (2022)
A. baumanniiDecolourized 90% of 500 mg/l of azo dyeShreedharan et al. (2021)
TouleneA. junniiCan degrade 80% of 50 ppm toluene within 72 hSingh et al. (2018)
Diesel degradationA. vivaniCan use diesel as the sole source of carbonZhang et al. (2022)
A. haemolyticusDiesel degradation facilitated by kurstakin moleculesDiallo et al. (2021)
A. baumanniiCan degrade 99% diesel at pH 7Imron et al. (2018)
A. lwoffiiBioremediation in marine environmentImron et al. (2020)
A. calcoaceticusPresence of diesel degrading genes alkM and xcpRHo et al. (2020)
Polyurethane degradationA. baumanniiGrows on polyurethaneEspinosa et al. (2020)
Crude oil degradationA. venetianusCan degrade upto 60.6% waxy crude oilLiu et al. (2021), Wang et al. (2019)
A. pittiCan degrade 36% percent crude oil in 21 days at 10 g/lWang et al. (2019)
Insecticide degradationA. schindleriCan degrade insecticides α-endosulfan and α-cypermethrin with more than 60% efficiencyGur and Algur (2022)
Furfural degradationA. baylyiCan degrade 1 g furfural in 1 hArteaga et al. (2021)
Fipronil degradationA. calcoaceticus86.6% degradation after 45 daysUniyal et al. (2016)
A. oleivorans89.7% degradation after 45 daysUniyal et al. (2016)
NAP, ANT, and other polyaromatic hydrocarbon degradationA. johnsoniiCan degrade 200 mg/l NAP and 1950 mg/l ANTJiang et al. (2018)
A. baumanniiEfficient at 300 mg/l concentration of pyreneGupta et al. (2020)
Catechol productionA. bouvetiProduces novel biscatechol siderophores namely propanochelin, butanochelin, and pentanochelinReitz and Butler (2020)
N-acetyl-β-D-glucosamine productionA. parvusCan convert chitin to N-acetyl-β-D-glucosamineKim et al. (2017)
Cellulase productionA. junniiCapable of producing cellulase at 112.38 U/mlBanerjee et al. (2020)
Mevalonate production
  • A. baylyi

Produces mevalonate from lignin derived compounds by β-keto adipose pathwayArvay et al. (2021)
Lipase productionA. indicusEfficient lipase producer from industrial wastePatel et al. (2021)
A. radioresistensCan produce 4.16 U/ml (at pH 9) of enzyme after 72 hGupta et al. (2018)
A. haemolyticusProduces lipase which is highly stable at 4°C displaying 90% activity even after 2 monthsSarac et al. (2016)
A. calcoaceticusA. calcoaceticus Rag-1 produces the most widely studied Emulsan (1000 kDa)Mujumdar et al. (2019)
Bioemulsion and biosurfactant productionA. pittiiCan produce 0.57 g/l lipopeptide biosurfactant when incubated with 1% (v/v) crude oilMujumdar et al. (2019)
A. beijerinckiiProduces the only bioemulsion that contains lipoprotein while others contain polysaccharidesMujumdar et al. (2019)
A. baumanniiProduces lipoglycan, using edible oil as carbon sourceMujumdar et al. (2019)
A. radioresistensProduces alsan, utilizing carbon source as ethanolMujumdar et al. (2019)
A. bouvetiiProduces the highest molecular weight lipo-hetero-polysaccharide bioemulsifierMujumdar et al. (2019)
A. lwoffiiProduces proteoglycan in presence of castor oil as carbon sourceMujumdar et al. (2019)
Phenanthrene degradationA. venetianusPhenanthrene degradation ability facilitated by ball-milled biochar (2.4 times increase)Guo et al. (2022)
Proteases productionA. pittiiYields as high as 11–12 U/ml with de-oiled neem seed cakeReddy et al. (2022)
Biohydrogen productionA. juniiCan produce up to 566 ml/l of H2 from wastewaters at pH 7.5Murugan et al. (2021)
Biodiesel degradationA. oleivoransUses biodiesel as a sole source of carbon at 30°CDeems et al. (2021)
Polyhydroxybutyrate (PHB) productionA. nosocomialisCan yield up to 5.88 g/l of PHB under optimal conditionsRanganadha et al. (2020)
Biotechnological applicationOrganismsDegradation/production potentialReferences
Phenol degradationA. calcoaceticus91.6% of 0.8 g/l phenol in 48 hIrankhah et al. (2019)
A. radioresistens99% of 450 mg/kg of phenol-contaminated soilLiu et al. (2020)
A. lwoffii41.67 mg/l per hourIrankhah et al. (2019)
A. tandoii100% degradation at the concentration of 280 mg/lVan et al. (2019)
Nitrogen assimilation and removalA. boisseriNot mentionedAlvarez-Perez et al. ()
A. calcoaceticusCapable of nitrogen removal under low temperature conditionsWu et al. (2022)
A. nectarisNot mentionedAlvarez-Perez et al. ()
Chromium reductionA. bouvetiiAble to reduce 40% chromium absorbed by plant rootsQadir et al. (2021)
Bioremediation of heavy metalsA. imdicusCan reduce chromium(IV) and mercury(II)Hu et al. (2021)
Hydrocarbon degradationA. lwoffiiCan degrade C13- C35 n-alkanes in crude oilLiu et al. (2020)
A. pittiCan degrade 88% of crude oilChettri et al. (2019)
A. baumanniiCan degrade 76% diesel and 90% paraffinsKumar and De (2023)
Dye discoloration and degradationA. pittiiCan degrade 84% methylene blue in 24 hOgunlaja et al. (2020)
A. calcoaceticusAzo dye amaranth degradation with 90% efficiencyAmeenudeen et al. (2021)
A. haemolyticusCan degrade methylene green, basic violet, and acid blue dyesHossain et al. (2022)
A. baumanniiDecolourized 90% of 500 mg/l of azo dyeShreedharan et al. (2021)
TouleneA. junniiCan degrade 80% of 50 ppm toluene within 72 hSingh et al. (2018)
Diesel degradationA. vivaniCan use diesel as the sole source of carbonZhang et al. (2022)
A. haemolyticusDiesel degradation facilitated by kurstakin moleculesDiallo et al. (2021)
A. baumanniiCan degrade 99% diesel at pH 7Imron et al. (2018)
A. lwoffiiBioremediation in marine environmentImron et al. (2020)
A. calcoaceticusPresence of diesel degrading genes alkM and xcpRHo et al. (2020)
Polyurethane degradationA. baumanniiGrows on polyurethaneEspinosa et al. (2020)
Crude oil degradationA. venetianusCan degrade upto 60.6% waxy crude oilLiu et al. (2021), Wang et al. (2019)
A. pittiCan degrade 36% percent crude oil in 21 days at 10 g/lWang et al. (2019)
Insecticide degradationA. schindleriCan degrade insecticides α-endosulfan and α-cypermethrin with more than 60% efficiencyGur and Algur (2022)
Furfural degradationA. baylyiCan degrade 1 g furfural in 1 hArteaga et al. (2021)
Fipronil degradationA. calcoaceticus86.6% degradation after 45 daysUniyal et al. (2016)
A. oleivorans89.7% degradation after 45 daysUniyal et al. (2016)
NAP, ANT, and other polyaromatic hydrocarbon degradationA. johnsoniiCan degrade 200 mg/l NAP and 1950 mg/l ANTJiang et al. (2018)
A. baumanniiEfficient at 300 mg/l concentration of pyreneGupta et al. (2020)
Catechol productionA. bouvetiProduces novel biscatechol siderophores namely propanochelin, butanochelin, and pentanochelinReitz and Butler (2020)
N-acetyl-β-D-glucosamine productionA. parvusCan convert chitin to N-acetyl-β-D-glucosamineKim et al. (2017)
Cellulase productionA. junniiCapable of producing cellulase at 112.38 U/mlBanerjee et al. (2020)
Mevalonate production
  • A. baylyi

Produces mevalonate from lignin derived compounds by β-keto adipose pathwayArvay et al. (2021)
Lipase productionA. indicusEfficient lipase producer from industrial wastePatel et al. (2021)
A. radioresistensCan produce 4.16 U/ml (at pH 9) of enzyme after 72 hGupta et al. (2018)
A. haemolyticusProduces lipase which is highly stable at 4°C displaying 90% activity even after 2 monthsSarac et al. (2016)
A. calcoaceticusA. calcoaceticus Rag-1 produces the most widely studied Emulsan (1000 kDa)Mujumdar et al. (2019)
Bioemulsion and biosurfactant productionA. pittiiCan produce 0.57 g/l lipopeptide biosurfactant when incubated with 1% (v/v) crude oilMujumdar et al. (2019)
A. beijerinckiiProduces the only bioemulsion that contains lipoprotein while others contain polysaccharidesMujumdar et al. (2019)
A. baumanniiProduces lipoglycan, using edible oil as carbon sourceMujumdar et al. (2019)
A. radioresistensProduces alsan, utilizing carbon source as ethanolMujumdar et al. (2019)
A. bouvetiiProduces the highest molecular weight lipo-hetero-polysaccharide bioemulsifierMujumdar et al. (2019)
A. lwoffiiProduces proteoglycan in presence of castor oil as carbon sourceMujumdar et al. (2019)
Phenanthrene degradationA. venetianusPhenanthrene degradation ability facilitated by ball-milled biochar (2.4 times increase)Guo et al. (2022)
Proteases productionA. pittiiYields as high as 11–12 U/ml with de-oiled neem seed cakeReddy et al. (2022)
Biohydrogen productionA. juniiCan produce up to 566 ml/l of H2 from wastewaters at pH 7.5Murugan et al. (2021)
Biodiesel degradationA. oleivoransUses biodiesel as a sole source of carbon at 30°CDeems et al. (2021)
Polyhydroxybutyrate (PHB) productionA. nosocomialisCan yield up to 5.88 g/l of PHB under optimal conditionsRanganadha et al. (2020)
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close